Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Работа в ноле силы тяжести

В рассматриваемом случае работа внутренних сил в несущей фазе 1 = 0 (несущая фаза — идеальная несжимаемая жидкость (см. (2.5.9)) и Я1 = О (внешние силы — однородное ноле тяжести (см. (2.5.1)). Подставляя (3.4.50)—(3.4.53) в уравнение энергии пульсационного движения (3.1.42) для несущей фазы, получим  [c.137]


Повторяя приведенные в 29 рассуждения о работе сил вблизи состояний устойчивого и неустойчивого равновесия, нетрудно убедиться, что для твердого тела существует такая же связь между характером состояния равновесия тела и значением его потенциальной энергии, как и для материальной точки. При этом для твердого тела величина потенциальной энергии в однородном поле тяготения определяется только положением центра тяжести тела. Потенциальная энергия твердого тела массы т в ноле тяготения, которое вблизи поверхности Земли можно считать однородным, определяется выражением  [c.415]

Так как элементарная работа явля-егся полным дифференциалом, то силовое поле силы тяжести является потенциальным и силовая функция этого ноля определяется по формуле  [c.349]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]



Теоретическая механика (1980) -- [ c.289 ]



ПОИСК



Работа сил тяжести

Работа силы

Работа силы тяжести

Силы тяжести

Тяжесть



© 2025 Mash-xxl.info Реклама на сайте