Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь в морской воде

Катодная электрохимическая защита значительно снижает скорость коррозии при трении стали в морской воде, что, кстати, подтверждает механико-электрохимический механизм этого вида разрушения металла.  [c.340]

Прокатная окалина на стали в морской воде играет роль эффективного катода, что может увеличить коррозию металла в десятки раз. Такую же роль катодов могут играть окрашенные участки металла по отношению к неокрашенным участкам.  [c.400]


Скорость развития точечной коррозии различных марок легированных сталей в морской воде при малых скоростях ее движения и при наличии процесса обрастания  [c.226]

Скорость равномерной коррозии выражают в разных единицах, чаще всего в миллиметрах в год (мм/год) или в граммах на квадратный метр за сутки [г/(м .сут)1 . Эти единицы характеризуют глубину разрушения или потерю массы металла, причем рассматривается поверхность металла, свободная от продуктов коррозии. Например, сталь в морской воде корродирует с приблизительно постоянной скоростью близкой к 0,13 мм/год, т. е. 2,5 г/(м .сут). Это усредненное значение обычно в случае равномерной коррозии в начальный период скорость повышена [9], поэтому данные о скоростях коррозии должны сопровождаться сведениями о длительности испытаний.  [c.26]

Железо в почве корродирует о образованием мелких язв, коррозия нержавеющей стали в морской воде характеризуется образованием глубоких питтингов. Многие металлы в быстром потоке жидкости подвергаются локальной коррозии, называемой ударным разрушением, см. [1, рис. 1 на с. 328 и рис. 98 на G. 1107].  [c.27]

Рис. 6.9. Влияние скорости потока на коррозию стали в морской воде [15Ь, стр. 391 ] Рис. 6.9. <a href="/info/589214">Влияние скорости потока</a> на <a href="/info/6793">коррозию стали</a> в морской воде [15Ь, стр. 391 ]
Как показали эксперименты в Панамском канале, содержание никеля до 5 % (при 0,1 % С) не сказывается на коррозионной стойкости стали в морской воде [45]. В первый год испытаний глубина питтингов на никельсодержащей стали была меньше, чем на стали с 0,24 % С, но при длительных испытаниях глубина питтингов на углеродистой стали была заметно меньше (после восьми лет испытаний на стали с 5 % Ni питтинг был на 77 % глубже, чем на углеродистой) [47 ].  [c.126]

Рис. 7. Скорость коррозии стали в морской воде в зависимости от содержания в ней хрома Рис. 7. <a href="/info/39683">Скорость коррозии</a> стали в <a href="/info/39699">морской воде</a> в зависимости от содержания в ней хрома

Коррозионная стойкость нержавеющих сталей в морской воде во многом зависит от их структуры. Стали мартенситного класса, содержащие 12-13 % Ст и 0,1-0,5 % С, обладают хорошей коррозионной стойкостью во многих средах, но в морской воде подвергаются заметной коррозии. Использование мартенситных сталей в морской воде и средах, содержащих хлориды, нецелесообразно из-за их склонности к локальной коррозии.  [c.20]

Наибольшую СТОЙКОСТЬ в морской воде среди нержавеющих сталей имеют стали аустенитного класса, например типичная сталь 18/8, содержащая, % 18 - Сг, 8 - №, 0.02- 0,12 - С. Скорость коррозии этой стали в морской воде равна 0,010 — 0,012 мм/год. Более высокая стойкость хромоникелевых сталей по сравнению с хромистыми является следствием существенного повышения никелем анодной поляризуемости стали.  [c.20]

Коррозия углеродистой стали в морской воде находится -в линейной зависимости от концентрации кислорода [15] (см. рис. 5). Однако линейная зависимость начинается не от нуля, а от определенной величины [16].  [c.37]

Влияние ги про динамических условий на катодную защиту стали в морской воде 38 292  [c.38]

Потенциалы малоуглеродистых сталей в морской воде изменяются во времени почти одинаково наблюдается непрерывное их разблагораживание, а через 75 ч происходит резкий сдвиг в отрицательную сторону. Потенциал чугуна сдвигается в отрицательную сторону еще более значительно, особенно через 75 ч (рис. III. 5).  [c.51]

Применение электрохимической защиты хромомарганцевых сталей в морской воде показало, что они хорошо стоят в паре с обычной углеродистой сталью при соотношении площадей хромомарганцевой к углеродистой сталей 20 1. Хромомарганцевые сплавы в контакте с хромоникелевыми сплавами  [c.70]

В случае подземных и гидротехнических сооружений, а также реакторов анодная защита не может конкурировать с катодной. Так, при анодной защите некоторых алюминиевых сплавов и нержавеющей стали в морской воде наблюдается довольно высокий защитный эффект, необходимая плотность тока  [c.70]

Основные закономерности, определяющие коррозию сталей в пресной воде, относятся также и к коррозии в морской воде. Однако коррозия сталей в морской воде имеет некоторые особенности.  [c.16]

Рис. 1.15. Общая (/) и питтинговая (2) коррозия углеродистой стали в морской воде Рис. 1.15. Общая (/) и питтинговая (2) <a href="/info/553468">коррозия углеродистой стали</a> в морской воде
Влияние температуры, солесодержания и аэрации на скорость коррозии углеродистой стали в морской воде показаны на рис. 1.16 и 1.17 [22]. Увеличение скорости потока воды, температуры, концентрации кислорода, наличие бактерий и обрастания увеличивают скорость коррозии в морской воде.  [c.19]

Для коррозионного поведения нержавеющих сталей в морской воде характерна склонность к питтинговой коррозии, начало которой определяет значение потенциала питтингообразования. Потенциалы питтингообразования для различных нержавеющих сталей в растворе хлорида натрия приведены в табл. 2.3.  [c.27]

Как уже отмечалось, в приморских районах морская вода часто применяется в качестве теплоносителя, особенно для систем охлаждения. Поэтому защита стали от коррозии в морской воде в замкнутых системах является актуальнейшей задачей [16]. Хорошую защиту стали в морской воде как в открытых, так и в закрытых системах обеспечивают неорганические фосфаты в концентрациях более 0,025 моль/л.  [c.99]


Таблица 5.5. Защитный эффект ингибиторов коррозии стали в морской воде Таблица 5.5. <a href="/info/160848">Защитный эффект ингибиторов</a> <a href="/info/6793">коррозии стали</a> в морской воде
В следующей главе рассмотрено влияние микроорганизмов на разрушение металла в морской воде. Обсуждаются эксперименты в таких средах, где важным фактором является наличие на поверхности металла бактерий. Как продолжительная, так н кратковременная экспозиция конструкционной стали в морской воде пригодной для роста микроорганизмов, показывает, что эти организмы оказывают существенное влияние на коррозионные процессы. Необходимы дальнейшие исследования, направленные на изучение возможности замедления коррозии путем селективного ингибирования деятельности бактерий, усиливающих коррозию.  [c.10]

Случаи точечной коррозии характерны для хромистых и хро-мониксленых сталей в морской воде. Как известно, эти стали лег-11 Эя1 аз 775  [c.161]

В табл. 16 приведены экспериментальные данные по точечной коррозии хромистых и хромоникелевых сталей в морской воде.. Из таблицы видно большое преимущество стали Х18Н10М2.  [c.226]

В определенных условиях атмосферная коррозия может протекать с гораздо ббльшей скоростью, чем в случае, когда металл погружен непосредственно в электролит. Так, известно, что атмосферная коррозия свай над уровнем моря превышает среднюю скорость коррозии стали в морской воде приблизительно в 5-6 раз.  [c.5]

Скорости коррозии углеродистых и низколегированных сталей, а также чугунов в морской воде отличаются незначительно. Скорость коррозии углеродистой и низколегированном стали в морской воде при полном погружении и длительных испыганиях колеблется в пределах 0,08-0,12 мм/год, и максимальный глубинный показатель для стали без окалины составляет 0,3—0.4 мм/год. Уже после годичной выдержки достигается достаточно постоянное во времени значение скорости коррозии. Введение легирую1Щ1х элеменюв. ю 5 % в сталь мало влияет на скорость коррозии. Исключение лр. Д. .1авляет хром, начиная от 5 % хрома сильно растет местная коррозия стали. Легирование стали одной медью в условиях морской коррозии в отличие от атмосферной коррозии не дает положительных результатов.  [c.19]

Коррозионная сюйкость ферритных сталей в морской воде удовлетворительна, но применение сталей этого класса в качестве конструк-нлонных материалов ограничено вследствие трудностей, связанных с механической обработкой п сваркой.  [c.20]

По данным фирмы Юнион Карбайд Корпорейшн , скорость коррозии оцинкованной стали в морской воде составляет 64 мкм/год (Бристольский канал) 14,2 мкм/год (в доках Саутгемптона), в стоячей пресной воде - 10,4 мкм/год при скорости потока пресной воды 0,15 м/с - 21,1 мкм/год.  [c.80]

При коррозии в морской воде или других нейтральных средах вследствие высокой электропроводности воды дальность действия контакта велика, поэтому соотношение площадей поверхности контактирующих металлов существенно влияет на характер контактной коррозии. Например, сочетание медных образцов большой площади с относительно малой площадью образцов из нержавеющей стали в морской воде опасно для нержавеющей стали. В этом случае сталь, активируясь, может стать анодной по отношению к меди, и тогда возможно сильное ускорение коррозии нержавеющей стали. Наоборот, контакт малых деталей с большими поверхностями нержавеющей стали более опасен для медных С1Тлавов в этом случае вероятнее устойчивое катодное состояние стали по отношению к меди и возможно значительное ускорение коррозии меди за счет контакта со сталью.  [c.202]

Исследованиями ученых установлено, что скорость коррозии стали в морской воде в различных водоемах изменяется в пределах 0,09—0,24 м м1год.  [c.46]

Влияние хлорирования на коррозионное повед ние нержавеющей стали в морской воде 43 332  [c.33]

Катодная защита сооружений, соприкасающихся с морской водой, например шпунтовых стенок, шлюзов, причалов, буровых или других площадок (выполняемых преимущественно из сталей типа St37—St52), практикуется в настоящее время в довольно широких масштабах. Покрытие таких сооружений само по себе уже через несколько лет обычно не обеспечивает защиты от коррозии. Скорость коррозии стали в морской воде (см. разделы 4.1 и 18.1) зависит от содерлония кислорода в воде, условий ее движения, температуры, солесодержания (которое в океанах практически постоянно и составляет 34 г-л , что соответствует удельному электросопротивлению р=0,3 Ом-м) и лишь в незначительной степени от величины pH. На рис. 17.1 показаны некоторые физические и химические свойства морской воды в зависимости от глубины. Классификационные общества, в частности Регистр Ллойда (Великобритания), Дет Норске Веритас (Норвегия) и Герман-  [c.337]

Там, где присутствует электрохимический элемент, омическое перенапряжение уменьшает значение максимального тока, создаваемого замкнутым элементом. Например, в элементе Да-ниеля, если концентрация ионов Си + и Zn + поддерживается равномерной, тах снижается по мере уменьшения концентрации благодаря возрастанию сопротивления растворов, хотя обратимая ЭДС элемента будет неизменной. При катодной защите стали в морской воде ток между анодом и сталью уменьшается с течением времени в результате образования известкового осадка (смеси СаСОз и Mg (ОН) 2) на поверхности стали. Если использовать алюминий в качестве протектора, на его поверхности может образоваться пленка AI2O3 Н2О, и ток уменьшится до значения, недостаточного для защиты стали. Очевидно, что такие факторы, как неоднородность металлического покрытия и (или) образование пленок или осадка продуктов коррозии, могут значительно уменьшить гальванический ток, проходящий между двумя металлами.  [c.27]


Гальванический элемент на рис. 1.9 иллюстрирует действие коррозии стали в морской воде. На рис. 1.10 показаны реакции, протекающие при нанесении капли раствора Na l на поверхность стального листа. Геометрия системы такова, что по периметру капли атмосферный кислород может быстро диф-  [c.30]

Контакты алюминиевых сплавов со сталью, в морской воде и в морской атмосфере вызывают сильную коррозию алюминиевых сплавов [81]. Контакты алюминия с алюминиевыми сплавами, содержащими медь, приводят J приморской атмосфере к коррозионному разрушению алюминия. По дан- ым ряда авторов, даже оксидирование алюминия не дает положительных >езультатов при его защите от контактной коррозии. Некоторые исследова- ели считают контакт алюминиевых сплавов с другими металлами допустимым при условии их предварительной защиты цинком, алюминием или кад-1ием, но не рекомендуют применять алюминий в паре с медью и медными плавами, с никелем и никелевыми сплавами. В последнем случае рекомен-  [c.83]

В средах хлоридов коррозионное растрескивание возникает в нейтральных растворах хлоридов при температуре выше 80 С. Повышение стойкости против язвенной и щелевой коррозии обеспечивается дополнительным легированием стали никелем и молибденом (сталь 08X17HI3M2T). Однако и в этом случае надежная работа деталей из этой стали в морской воде возможна при обеспечении катодной защиты протекторами из углеродистой стали. Повышение стойкости против коррозионного растрескивания обеспечивается дальнейшим увеличением содержания хрома и никеля до 40—50 % (стали типа Х32Н45 и др.).  [c.70]

Защитное действие пирофосфата натрия в морской воде с увеличением его концентрации падает в открытых системах и не меняется в замкнутых. Мононатрийфосфат натрия лишь в концентрациях до 0,025 моль/л снижает скорость коррозии стали в морской воде, а при больших концентрациях может даже стимулировать коррозию. Динатрийфосфат при концентрации 0,001 моль/л и выше обеспечивает защиту стали в морской воде как в открытых, так и в закрытых системах. С меньшей эффективностью, но тем не менее надежно уменьшает скорость коррозии тринатрийфосфат.  [c.99]

Наилучшую защиту стали в морской воде обеспечивает динатрийфосфат. Если в морской воде присутствуют сероводород  [c.99]


Смотреть страницы где упоминается термин Сталь в морской воде : [c.12]    [c.14]    [c.15]    [c.7]    [c.7]    [c.19]    [c.84]    [c.201]    [c.8]    [c.72]    [c.71]    [c.100]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.17 , c.24 ]

Коррозия и защита от коррозии (1966) -- [ c.799 ]



ПОИСК



Еж морской

Коррозия сталей и цветных металлов в атмосфере, в морской воде и морское обрастание

Морская вода

Морская вода сталей нержавеющих

Морские воды

Потенциал нержавеющих сталей в морской воде

Сталь мартенситные, коррозия в морской воде

Улановский. Коррозия углеродистой и нержавеющей сталей в морской воде при уменьшении концентрации кислорода



© 2025 Mash-xxl.info Реклама на сайте