Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения в конечных элементах Процедуры вычисления

Остается определить осредненные (по композиту) приращения деформации ползучести, происходящие в течение первого интервала времени. Это делается путем вычисления системы упругих узловых сил, необходимых для удвоения приращений деформации ползучести каждого треугольного конечного элемента. Процедура включает в себя только законы a(s) компонентов композита и уравнения, связывающие узловые силы и напряжения в каждом элементе. Приложение системы узловых сил к массиву конечных элементов (с подходящими ограничениями, вытекающими из условий симметрии) и последующий упругий анализ этого массива прямо приводят к осредненным (по композиту) приращениям деформации ползучести и приращениям напряжения для первого интервала времени. Эти приращения добавляются к напряжениям и деформациям, соответствующим времени / = О, что приводит, таким образом, к напряженно-деформированному состоянию композита в момент времени t = At. Такое вычисление можно повторить п раз до получения напряженно-деформи-рованного состояния в каждом конечном элементе и в композите к моменту времени t = пМ.  [c.268]


Если необходимо вычислить напряжения и деформации для большого числа внутренних точек, то для вычисления точных значений смещений в узловых точкам внутренних ячеек более эффективно использовать уравнение (4.28). Это уравнение справедливо во всех точках, включая граничные. Напряжения и деформации вычисляются по смещениям при помощи процедуры, аналогичной используемой в методе конечных элементов или в методе конечных разностей. Поэтому, если и — шестимерные векторы смещений в узлах некоторой внутренней треугольной ячейки, то вектор смещений в любой точке этой внутренней ячейки записывается в виде [см. (4.21)]  [c.113]

Поверхность тела представляется при помощи четырехугольных и треугольных элементов с квадратичным изменением формы и линейным, квадратичным или кубическим изменением перемещения и вектора напряжений относительно внутренней системы координат. Тело разбивается на подобласти производится дискретизация интегрального уравнения для каждой подобласти, и получается система уравнений ленточного типа. Для вычисления интегралов используется квадратурная формула Гаусса, число узлов в которой выбирается на основании верхней оценки для ошибки, определенной по значениям производных от подынтегральных выражений. Масштаб коэффициентов в уравнениях выбирается таким образом, чтобы получить устойчивую при счете систему, разрешимую методом исключения без итерации остатков. Поблочное решение уравнений позволяет рассматривать большие задачи. В программе используется большое число процедур, осуществляющих контроль и автоматическое формирование данных. Результаты решения задачи о фланце трубопровода и характеристики выполнения программы сравниваются с результатами, полученными методом конечных элементов, и экспериментальными результатами.  [c.111]

Одним из преимуществ метода конечных элементов является то, что многие его этапы являются общими для всех областей приложения метода. Процедура решения задач переноса тепла н течения грунтовых вод включает много тех же шагов, которые встречаются при расчете жестких рам и ферм и при анализе напряженного и деформированного состояний деформируемой сплошной среды. Общая блок схема вычислений представлена на фиг. 7.3. Эта блок схема предназначена для симплекс-элементов и пригодна для всех областей применения, обсуждаемых в следующих пяти главах. Блок-схема неприменима в случае изопараметрических элементов, которые будут изучены позже в этой книге. Работа основных блоков схемы будет рассмотрена в общем случае, а не в связи с каким-то специальным примером.  [c.116]


Перед тем как проводить нелинейный анализ, необходимо выполнить ряд вычислений на основании линейного подхода для определения как начальных характеристик жесткости композита, так и его предела текучести. Эта процедура осуществлена при помощи метода конечных элементов для повторяющегося сегмента структуры однонаправленного композита. Таким образом определены модули упругости в направлении армирования и в поперечном направлении, модуль сдвига и соответствующие коэффициенты Пуассона однонаправленного слоя. Эти константы позволяют рассчитать упругие свойства композита. Далее из начальных линейных зависимостей о(е) композита можно определить линейные приближения для деформаций композита, соответствующих любым конкретным нагрузкам в плоскости. Затем вычисляются деформации каждого слоя в предположении о том, что нормали к поверхности недеформированного композита остаююя прямыми и перпендикулярными после нагружения. Осредненные напряжения в каждом слое определяются через уже известные соотношения о(е) для слоя.  [c.276]

Вычисление напряжений в конечных элементах осуществляется с помощью процедуры PRSA31, не описанные ранее формальные параметры которой означают IN — порядковый номер варианта нагружения DN (2 NR) — вектор узловых перемещений конструкции для Ш-го варианта нагружения SG (NS, 5) — выходной массив искомых напряжений а , Ое, т , Oi в центрах тяжести конечных элементов. Здесь используется обращение к процедуре MRDBS1.  [c.129]


Расчет машиностроительных конструкций методом конечных элементов (1989) -- [ c.129 ]



ПОИСК



309 — Элементы — Вычисление

Конечный элемент

Напряжение конечное

О вычислении напряжений

Процедура



© 2025 Mash-xxl.info Реклама на сайте