Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конечные элементы толстых пластинах

Расчеты, основанные на методах конечных элементов для зоны краевого эффекта, описывают конечный рост межслойных напряжений, который обнаружен в первоначальной формулировке с использованием плоской задачи теории упругости [24, 251, а также моделируют распределение пространственных компонент тензора напряжений в окрестности отверстия небольшого диаметра в толстой пластине при растяжении ). Однако эти элементы не являются полностью согласованными с моделью однородных слоев, лежащей в их основе, поскольку разрыв в величинах упругих постоянных в такой модели привел бы к неограниченному росту в точках пересечения свободной боковой границы с меж-слойной поверхностью. Такая сингулярность в принципе должна быть учтена в гипотезах о поведении напряжений, но это пока не сделано.  [c.421]


Для решения плоских задач механики разрушения, а также сквозных трещин в толстых пластинах, подвергнутых растягивающим и изгибающим нагрузкам, был использован еще один вариант описанной выше концепции суперпозиции [76—78]. В рамках этого подхода, который аналогичен глобально-локальной формулировке метода конечных элементов [79], пробные функции перемещений, используемые в гфинципе виртуальной работы, состоят из двух частей (1) из множества обычных (несингулярных) конечно-элементных базисных функций, которые, если их рассматривать в качестве глобальных функций формы, соответствующих единичному перемещению на каждом узле, будут иметь ненулевые значения только на элементах, содержащих рассматриваемый узел в качестве общего (т. е. имеют локальный носитель) (2) из аналитического решения, которое включает в себя изменения напряжения типа l/ /r и О (г), причем это решение справедливо глобально.  [c.210]

Упомянутые выше теории пластин и модели конечных элементов демонстрируют эффективность вариационных методов в механике конструкций и смежных областях при приложении методов конечных элементов и при построении алгоритмов для эффективных численных расчетов сложных практических задач. Теория пластин Тимошенко—Миндлина создана специально для того, чтобы алго-ритмизовать расчет тонких пластин и пластин средней толщины. Исследования зоны краевого эффекта достигли состояния, когда решение уже может войти в противоречие со способностью модели описать реальную физическую ситуацию. Работы по теории толстых пластин являются логическим обобщением теории Тимошенко—Миндлина, ио требуется подождать до тех пор, пока развитие как технологии изготовления, так и проектирования этих пластин подтвердит ее практическую ценность. В целом приведенные выше высказывания дают общую картину положения дел в этой быстро развивающейся области.  [c.423]

Формулы (7.2) —(7.5) можно взять за основу при выводе жесткостных характеристик конечных элементов, оеуществт ляя при этом независимую аппроксимацию функций Uz, Х и 9у по их узловым значениям. Как следует из (7.1), совместность перемещений обеспечивается, если каждая из этих функций непрерывна на границах между элементами. Так же как и в случае плоской задачи теории упругости, выполнить это условие можно, например, с помощью изопараметрической формулировки конечных элементов. Следовательно, здесь открываются широкие возможности для введения конечных элементов произвольной формы, в том числе криволинейных. Но применение подобных элементов к расчету тонких пластин до последнего времени было ограниченным из-за чрезмерной жесткости элементов, которая обусловлена ложными деформациями поперечного сдвига и появляющимися при чистом изгибе пластины. В работе [38] показано, что и в случае изгиба пластин эффективным средством борьбы с ложными деформациями поперечного сдвига является использование минимально допустимого порядка интегрирования соответствующих членов при вычислении матрицы жесткости элемента. Несколько конечных элементов, полученных таким способом, представлено в следующем параграфе. Они могут успешно использоваться при расчете как тонких, так и сравнительно толстых пластин.  [c.230]



Вариационные методы в теории упругости и пластичности (1987) -- [ c.422 ]



ПОИСК



Конечный элемент

Пластина толстая

Толстов

Элементы для пластин



© 2025 Mash-xxl.info Реклама на сайте