Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Композиты с полимерной матрицей

КОМПОЗИТЫ С ПОЛИМЕРНОЙ МАТРИЦЕЙ 7О3  [c.703]

Композиты с полимерной матрицей  [c.703]

Область применения этих испытаний ограничена в основном композитами с полимерной матрицей [8—10]. Отдельное волокно заделывается аксиально в материале матрицы. В зависимости от подлежащей определению характеристики образец может иметь различную форму. Для измерения прочности перпендикулярно поверхности раздела сжимающее усилие прикладывают к образцу с криволинейной шейкой (рис. 21, а). Для определения прочности при сдвиге сжимающее усилие прикладывают к образцу постоянного сечения или к образцу трапециевидного профиля (рис. 21,6).  [c.72]


Число научных публикаций, посвященных композитам с металлической матрицей, невелико. Поэтому для более полного анализа в ряде случаев проводятся параллели с другими композитными системами. Влияние поверхности раздела широко изучено в волокнистых композитах с полимерными матрицами с этими системами и проводится параллель, если не хватает данных по системам с металлической матрицей.  [c.267]

Одним из недостатков, препятствующих широкому применению композитов с полимерными матрицами, является их низкая прочность во влажном состоянии. Успехи, достигнутые при изучении этого вопроса, связаны главным образом с использованием эмпирических методо(В. В настоящей статье делается попытка определить наиболее важные направления исследований, которые могли бы привести к необходимым техническим решениям.  [c.88]

Настоящее обсуждение не ограничено одним только типом композитов — рассмотрены композиты с полимерной, металлической и керамической матрицами, а также композиты, упрочненные частицами, и волокнистые композиты. Кроме того, вопросы разрушения и усталости рассматриваются также и в других томах настоящего издания, и в них дано соответствующее широкое обсуждение этих вопросов. Тем не менее я чувствовал, что отдельный том по разрушению и усталости, в котором рассмотрение не ограничено типами материалов, мог бы помочь перенести некоторые достижения технологии, разработанной для одного класса материалов, на другие классы. Например, очень часто исследователи, занимающиеся композитами с полимерной матрицей, не читают литературу по металлам, и наоборот.  [c.9]

A. Композиты с полимерной матрицей...........,.......... 285  [c.267]

Свойства бериллия также исследовались для определения возможностей его использования в качестве волокнистого армирующего материала для композитов с полимерной матрицей, если он сам имелся в достаточном количестве в форме пластичной проволоки. Высокий модуль (на 40% больше, чем у стали) и низкая плотность (на 30% меньше, чем у алюминия) сделали его привлекательным конструкционным материалом для авиации, и можно было надеяться, что пластичность проволок улучшит ударные свойства композита. В работе [62] опубликованы некоторые результаты по растяжению бериллиевой проволоки диаметром 0,005 дюйм. Она разрушалась вязко даже при комнатной температуре после удлинения примерно на 1—3%. Позднее [36] исследован более детально предел упругости проволоки и определено ее остаточное удлинение при различных уровнях нагружения. Кроме того, исследованы также свойства длительной прочности проволоки при комнатной температуре. Данные показывают уменьшение прочности с ростом продолжительности действия нагрузки, однако результаты имеют большой разброс.  [c.278]

Большой класс связующих представляют полимеры. Это вязкоупругие материалы, которые даже при комнатной температуре под нагрузкой в различной степени ползут. Если в них поддерживается постоянная деформация, то напряжения релаксируют или до нуля, или до некоторого другого значения. Их диаграммы напряжение — деформация чувствительны к скорости деформации, а модуль имеет тенденцию к увеличению с увеличением этой скорости. Короче, это материалы со свойствами, зависящими от времени. Соответствующие свойства, которые позднее будут использованы при разработке временной модели композитов с полимерными матрицами, представлены в разд. III.  [c.280]


Х, Длительная прочность композитов А. Композиты с полимерной матрицей  [c.285]

Имеется еще несколько статей по исследованию влияния скорости на поведение при растяжении композитов с полимерной матрицей, армированной стеклотканью или короткими стекловолокнами. Одна из них [37] — исследование влияния скорости (и температуры) на поведение при растяжении полиэфирного композита, армированного стеклотканью 181. Измерены прочность при растяжении, деформация и модуль при восьми скоростях деформации, так что времена до разрушения менялись от 6,7-10 до 9,8 мс. Наблюдалось существенное увеличение прочности и значений деформации (см. табл. IV).  [c.321]

Каждая из этих особенностей в отдельности представляет собой фактор, который не обнаруживается в конструкционных металлах в той степени, в которой он имеется в большинстве волокнистых композитов. В сочетании друг с другом эти особенности обусловливают беспрецедентную сложность усталостного поведения композита, но они также обеспечивают и беспримерные возможности конструирования материалов с более высоким сопротивлением усталости. Наличие вязкой матрицы приводит к еще большему различию усталостного поведения композитов с металлической матрицей и большинства композитов с полимерной матрицей.  [c.396]

Выбор материала матрицы и геометрической структуры композита диктует и выбор способа его изготовления. На рис. 11.3 показан обычный способ изготовления слоистых и намотанных композитов с полимерной матрицей. Волокна сматывают с бобин, подвергают поверхност-  [c.138]

Рис.11.3. Изготовление слоистых намотанных композитов с полимерной матрицей а - общая схема изготовления ПКМ б - схе.ча изготовления. многослойного листового ПКМ в - схема изготовления многослойного намотанного ПКМ Рис.11.3. Изготовление слоистых намотанных композитов с полимерной матрицей а - <a href="/info/4759">общая схема</a> изготовления ПКМ б - схе.ча изготовления. многослойного листового ПКМ в - схема изготовления многослойного намотанного ПКМ
У композитов с полимерной матрицей наиболее интенсивное снижение характеристик прочности происходит при температурах выше 250-300 °С у композитов системы углерод-углерод прочность сохраняется до весьма высоких температур (/ 1500 °С).  [c.138]

Для композиционных волокнистых материалов существует несколько классификаций, в основу которых положены различные признаки, например, материаловедческий (по природе компонентов) конструктивный (по типу арматуры и ее ориентации в матрице). В рамках рассматриваемых классификаций можно выделить несколько больших групп композиционных материалов. Ниже рассматриваются композиты с полимерной матрицей (пластики) и оборудование для их производства.  [c.756]

Здесь /3/ , afm Bfm, У/m - некоторые постоянные. Во временных процессах разрушения композитов с полимерной матрицей наибольшую роль играет, по-видимому, общий кинетический механизм.  [c.95]

В качестве армирующих элементов композитов с полимерной матрицей используются непрерывные и дискретные волокна различной природы, ткани и нетканые материалы на основе этих волокон. Наибольшее распространение получили пластики, армированные стеклянными, углеродными, органическими, борными и некоторыми другими видами волокон.  [c.37]

Достоинства композитов с полимерной матрицей следующие высокие удельные прочностные и упругие характеристики, стойкость к химическим агрессивным средам, низкие те-  [c.37]

СВОЙСТВА КОМПОЗИТОВ с ПОЛИМЕРНОЙ МАТРИЦЕЙ  [c.56]

В качестве армирующих элементов композитов с полимерной матрицей используются непрерывные и прерывистые волокна различной природы, ткани и нетканые материалы на их основе. Наибольшее распространение получили пластики, армированные стеклянными, углеродными, органическими, борными и некоторыми другими видами волокон. В качестве матрицы используются отвержденные эпоксидные, полиэфирные и некоторые другие термореактивные смолы, а тжж , термопластичные материалы.  [c.419]

Композиты с полимерными матрицами используют в автомобиле-, авиа-, судостроении (детали шасси, кузовов, трансмиссионные валы вертолетов, гребные винты, лопатки компрессоров), для деталей химической аппаратуры и криогенной техники (трубы, емкости для реактивов), для вычислительных машин.  [c.175]

Полимерная матрица следует закону Гука почти до момента разрушения, незначительные отклонения от закона упругости могут не приниматься во внимание. Как правило, удлинение матрицы при разрыве в несколько раз больше, чем удлинение волокна, поэтому качественная картина поведения такого композита в известной мере напоминает поведение композита с металлической матрицей при малом объемном содержании волокна возможно его дробление. Однако малая прочность матрицы по отношению к касательным напряжениям и довольно слабая связь между волокном и матрицей вносят свою специфику. В композите органическое волокно — эпоксидная смола, наоборот, разрывное удлинение смолы меньше, чем удлинение волокна. Ввиду малой прочности матрицы происходит ее дробление на мелкие частички, которые легко отваливаются, обнажая пучки волокон, которые уже относительно легко обрываются.  [c.703]


В качестве матрицы используются и полимеры, и металлы. Из полимерных смол применяются эпоксидные и полиамидные группы, а из металлов — алюминий и никель. Выбор матрицы зависит от применения композита. Например, волокнистые композиты на основе эпоксидной смолы хорошо работают при низких температурах, а композиты с металлической матрицей — при высоких температурах.  [c.64]

Для описания разрушения анизотропных композитов можно приспособить теорию Сен-Венана, в которой используются максимальные относительные удлинения. Следует отметить, что теория Сен-Венана даже в ее нервоначальной формулировке плохо описывает текучесть изотропной среды и обычно не используется в практике проектирования металлических конструкций критерий Сен-Венана дает удовлетворительные результаты только в случае очень хрупких материалов. То обстоятельство, что некоторые композиты с полимерной матрицей являются очень хрупкими, приводит к возможности применения модифицированного критерия Сен-Венана к анизотропным композитам (Уэд-дупс [50]). Критерий Сен-Венана (критерий максимальной деформации) для изотропного материала можно записать через  [c.416]

Хотя это определение может создать представление о сходных чфтах систем с металлической и полимерной матрицами, между ними имеется Одно существенное различие, касающееся их рабочей температуры. Поскольку композиты с металлической матрицей предназначаются для работы в условиях высоких температур, при применении этих Материалов возникают проблемы диффузионной стабильности, в основном отсутствующие для композитов с полимерной матрицей  [c.78]

В первую очередь рассмотрим разрушение путем отрыва в случае, когда трендина перпендикулярна волокнам. В однонаправленно армированных композитах с полимерной матрицей этот тип разрушения бывает получить нелегко, поскольку их склонность к продольному расщеплению велика. В композитах с металлической матрицей отношение прочности при поперечном растяжении к сдвиговой прочности не столь велико, и трещинам приходится распространяться поперек волокон. В композитах (как с полимерной, так и с металлической матрицей), где упрочнитель ориентирован в нескольких нанравлениях, трещина часто вынуждена распространяться в направлении, перпендикулярном главным осям ортотропии, а они обычно совпадают с направлением одного или многих слоев волокон. Значит, при распространении трещины разрушаются волокна.  [c.279]

Глава посвящена влиянию вязкоупругости на термомехаиическое поведение и срок службы композитов с полимерной матрицей. В первую очередь коротко рассмотрено линейное вязкоупругое поведение полимерных смол при температурах выше и ниже температуры стеклования. Далее показан простой способ учета этого поведения при оценке эффективных термомеханических свойств композитов и анализе остаточных напряжений, являющихся следствием термической и химической усадки компонент этих материалов в процессе переработки. Затем изложен анализ колебаний и распространения волн в диапазоне упругих свойств композитов. Особое внимание при этом уделено использованию алгоритма быстрого преобразования Фурье ), Разделы, посвященные линейной вязкоупругости, завершаются описанием процессов трещинообразования на микро- и макроуровне при помощи аналитических методов и алгоритма FFT, В главу также включено обсуждение предварительных вариантов моделей, позволяющих учесть влияние статистической природы дефектов на нелинейное механическое поведение композитов и характер их разрушения под действием переменных во времени нагрузок.  [c.180]

Развитие техники требует механически прочных и термостойких материалов. Композиты с металлической матрицей в большинстве случаев не обладают достаточной удельной прочностью, а композиты с полимерной матрицей, имея высокие удельные механические характеристики, значительно разупрочняются при воздействии высоких температур. Поэтому особый интерес представляют керамические (ККМ) и углерод-углеродные (У У КМ) композиционные материалы, которые ю-гут стабильно работать даже при телгпературах, превышающих температуру плавления металлической матрицы.  [c.155]

Первые стадии производства углерод-углеродного композита аналогичны изготовлению композита с полимерной матрицей. Углеродные волокна пропитывают фенолформальдегидной смолой, т.е. термореактивной смолой. Затем соответствующим образом собранные и пропитанные смолой волокна нафевают в инертной атмосфере. При этом происходит пиролиз смолы (обугливание, аналогичное процессу превращения дерева в древесный уголь) и остается углерод. Полученный композит снова под давлением пропитывают смолой и подвергают пиролизу. В результате многократного повторения процесса образуется прочный материал с минимальным числом внутренних пустот.  [c.164]

Композиты с полимерной матрицей — это армирующие волокна, монолитизированные с помощью какого-нибудь полимерного связующего (рис. 18.1). Фирмы, применяющие композиты для авиационно-космических целей, обычно не производят исходных компонентов волокйн и связующих. Заготовки им, как правило, изготавливает фирма-поставщик, располагая в заданном порядке необходимые составные части в установленных пропорциях. При этом заготовки частично отверждаются до такого состояния, чтобы их можно было обычными способами транспортировать и грузить. Такой еще не совсем готовый композиционный материал называется препрегом (в отличие от волокон, предварительно пропитанных связующим). Изготовление из него высококачественных конструкционных изделий в значительной степени зависит от качества препрега и таких факторов, как равномерность интервалов между волокнами, количество разрушенных волокон и их распределение, липкость смолы. Чтобы гарантировать выполнение стандартов качества, необходимо проводить визуальный контроль и прочностные испытания этих заготовок. Свойства, которые надлежит определять при анализе, обычно вносятся в прилагаемую спецификацию. Борное и углеродное волокна производятся и выпускаются в виде лент шириной до 76 и 305 мм соответственно. Иногда углеродное волокно выпускают в форме поперечно стеганых лент шириной до 305 мм, а для некоторых коммерческих целей — шириной до 1254 мм. Эти ленты пропитывают смолой методом мокрой пропитки (из раствора) или прессованием волокон при нагревании до Перехода смолы в В-стадию.  [c.257]


Поверхности раздела в композитах с полимерной матрицей. Редактор Е. П. Плюдеман  [c.503]

Объектами исследования в монографии являются композиционные материалы, состоящие из металлических матриц и высокопрочных неорганических волокон. Исследуются процессы разрушения бороалюминия, углеалюминия, процессы ползучести и разрушения эвтектических направленно кристаллизованных композитов и процессы усталостного разрушения слоистых композитов. Предлагаемый подход может быть применен и при исследовании волокнистых композитов с полимерной матрицей, перспективных керамических композитов, разнообразных поливолокнистых гибридных композиционных материалов.  [c.9]

Для композиционных волокнистых материалов существует несколько классификаций, в основу которых положены различные признаки, например, материаловедческий ( о природе компонентов) конструктивный (по типу арматуры и ее ориентации в матрице). В рамках рассматриваемых классификаций можно выделить несколько больших групп композиционных материалов. К таким группам следует отнести композиты с полимерной матрицей (пластики), композиты с металлической матрицей (металло-компознты), композиты с керамической матрицей и матрицей из угле рода.  [c.12]

Оргавические волокна. Для получения высокопрочных и высокомодульных композитов с полимерной матрицей (органопластиков) применяют волокна на основе ароматических полиамидов (арамидов) [17, 18, 24].  [c.17]

Достоинства композитов с полимерной матрицей высокие удельные прочностные и упругие характеристики стойкость к химически агрессивным средам низкие тепло- и электропроводность радиопрозрачность стеклопластиков умеренные температуры и давления получения композитов, что позволяет реализовать и такие способы, как прессование, и таше, как намотка - одновременное получение композита и детали.  [c.419]


Смотреть страницы где упоминается термин Композиты с полимерной матрицей : [c.228]    [c.711]    [c.314]    [c.14]    [c.14]    [c.116]    [c.57]    [c.490]   
Смотреть главы в:

Механика деформируемого твердого тела  -> Композиты с полимерной матрицей

Справочник по композиционным материалам Книга 2  -> Композиты с полимерной матрицей


Справочник по композиционным материалам Книга 2 (1988) -- [ c.257 ]



ПОИСК



Композит



© 2025 Mash-xxl.info Реклама на сайте