Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Легирующие элементы ванадий

При нагреве титан поглощает кислород, азот, водород и углерод, которые образуют с Ti а и Tip твердые растворы внедрения разной предельной концентрации, в отличие от нормальных легирующих элементов (ванадия, алюминия, олова и др.), образующих твердые растворы замещения.  [c.519]

Легирующие элементы (ванадий, хром, марганец, железо, кобальт, никель, нио бий, молибден, тантал, вольфрам) могут стабилизировать высокотемпературную фазу при закалке. Последующее разложение этой неустойчивой фазы путем отпуска или старения приводит к значительному улучшению механических  [c.38]


Легирующие элементы (ванадий, вольфрам, молибден) склонны образовывать карбиды и входить в твердые растворы, а другие легирующие элементы — никель, кобальт — входят только в твердые растворы. Некоторые элементы (хром, марганец) могут переходить в твердый раствор в феррите или образовывать комплексные карбиды. Карбидообразующие элементы не вызывают затруднений при отжиге, необходимом для улучшения обрабатываемости легированных сталей. Иначе обстоит дело с легирующими  [c.328]

Транспортные стали (ТРС) - класс конструкционных нелегированных или низколегированных материалов с содержанием углерода не более 1 %, а серы и фосфора не более 0,07 %. Они могут иметь несколько легирующих элементов (ванадий, марганец, хром) с массовой долей не более 1,5%.  [c.712]

Основным легирующим элементом в промышленных титановых сплавах является алюминий. Два следующих по значимости легирующих элемента — ванадий и молибден. Еще в качестве легирующих элементов используются по крайней мере семь металлов Сг, Мп, Fe, Си, Sn, Zr, W. Для микролегирования используют Nb, Та, Pd и др. Легирующие элементы оказывают различное влияние на свойства сплавов А1, Zr, Nb повышают жаропрочность до 550°С Мо, Zr, Nb, Та, Pd повышают коррозионную стойкость в кислотах.  [c.196]

Чувствительность стали к старению можно понизить путем введения легирующих элементов — ванадия, хрома, молибдена [231, титана, и др. Наиболее эффективное влияние оказывает присадка ванадия склонность кипящей мартеновской стали к старению снижается уже при содержании ванадия, равном 0,026—0,030 о- Для получения аналогичного эффекта в кипящей бессемеровской стали требуется присадка больших количеств ванадия (более 0,1%). Присадка небольших количеств хрома также способствует снижению склонности кипящей стали к деформационному старению. Однако действие хрома менее эффективно, чем действие ванадия.  [c.156]

Г и танов ые сплавы с термодинамически устойчивой Р ф а 3 о й можно получить лишь при высоких концентрациях легирующих элементов (ванадия, молибдена, ниобия, тантала и др.). Однако при этом теряется одно из основных преимуществ титановых сплавов — относительно малая плотность. Это является основной причиной того, что титановые сплавы со стабильной р-фазой не получили широкого распространения.  [c.388]

Таким образом, влияние легирующих элементов ванадия, молибдена, никеля, хрома, марганца и кремния на сопрогивление высокопрочных сталей коррозионному растрескиванию определяется главным образом характе-  [c.139]


Каждый легирующий элемент обозначается буквой Н — никель X — хром К — кобальт М — молибден Г — марганец Д — медь Р — бор Б — ниобий Ц — цирконий С — кремний П — фосфор Ч — редкоземельные металлы В — вольфрам Т — титан А — азот Ф — ванадий Ю — алюминий.  [c.363]

Улучшаемые стали содержат 0,3—0,4%С и разное количество легирующих элементов (хром, никель, молибден, вольфрам, марганец, кремний) в сумме не более 3—5%, и часто около 0,1% измельчителей зерна (ванадий, титан, ниобий, цирконий).  [c.383]

Быстрорежущие стали маркируют буквой Р. Следующая за ней цифра указывает среднее содержание главного легирующего элемента быстрорежущей стали — вольфрама (в процентах). Среднее содержание ванадия в стали обозначают цифрой, проставляемой за буквой Ф, кобальта — цифрой за буквой К и т. д. Среднее содержание хрома в большинстве быстрорежущих сталей составляет  [c.296]

Буквенные обозначения легирующих элементов Р — бор, Ю — алюминий, С — кремний, Т — титан, Ф— ванадий, X — хром, Г — марта нец, Н — никель, М — молибден,  [c.68]

Обозначения марок стали по указанному ГОСТу построены следующим образом. Первые две цифры указывают содержание углерода в сотых долях процента. Легирующие элементы обозначены прописными русскими буквами Р — бор, Ю— алюминий, С — кремний, Т — титан, Ф — ванадий, X — хром, Г — марганец, Н — никель, М — молибден, В — вольфрам. Цифры после букв указывают процентное содержание легирующего элемента в целых единицах. Отсутствие цифр означает, что сталь содержит до 1,5% этого элемента. Буква А в конце марки обозначает высококачественную сталь . Особо высококачественная сталь обозначается буквой Ш, которая ставится через тире в конце марки.  [c.329]

Легирующие элементы образуют с железом твердые растворы и химические соединения. Твердые растворы замещения неограниченной растворимости непосредственно после затвердевания образуют с железом никель и кобальт и металлы группы платины, а с а-железом -только хром и ванадий. Характерная диаграмма для систем Fe - Сг показана на рис. 21.  [c.45]

Влияние легирующих элементов Высокая жаропрочность стали достигается путем легирования ее хромом, никелем, молибденом, вольфрамом, ниобием, ванадием, ко()альтом, титаном, алюминием и другими элементами.  [c.48]

На рис. 41 приведены данные о влиянии легирующих элементов на временное сопротивление ниобия при кратковременных испытаниях на растяжение при 1095°С. К числу эффективных упрочнителей ниобия (см. рис. 41) относятся хром и алюминий. Ванадий, цирконий, гафний, молибден и вольфрам эффективно упрочняют ниобий при введении в количествах 5 - 20% (по массе), а титан и тантал практически не упрочняют его.  [c.89]

В составы титановых сплавов, кроме алюминия, дополнительно вводят молибден, ванадий, цирконий, хром, кремний, олово, ниобий и железо. Эти легирующие элементы, а также попадающие примеси изменяют температуру полиморфного превращения титана.  [c.298]

Согласно ГОСТ 4543—71 в обозначении марок конструкционной легированной стали первые две цифры указывают среднее содержание углерода в сотых долях процента, буквы за цифрами означают Р — бор, Ю — алюминий, С — кремний, Т — титан, Ф — ванадий, X — хром, Г — марганец, Н — никель, М — молибден, В — вольфрам. Цифры после буквы указывают примерное процентное содержание легирующего элемента в целых единицах отсутствие цифр означает, что в стали содержится до  [c.49]

Повышенная концентрация хрома найдена в области карбидной прослойки и в диффузионной зоне вблизи основного материала (рис. 2). Отличительной особенностью покрытия является низкое содержание во внешней зоне легирующих элементов сплава, таких как титан, ванадий, вольфрам, молибден.  [c.174]

Большое влияние на коррозионное растрескивание в кислотах оказывает состав сплавов (легирующие элементы и примеси). Фактических данных по этому вопросу еще мало, но, по-видимому, закономерности, выявленные при изучении коррозионного растрескивания титановых сплавов в растворах галогенидов, остаются,—наиболее опасными являются алюминий и газовые примеси, а увеличению стойкости к растрескиванию способствуют /3-стабилизирующие элементы (особенно изоморфные-ванадий и молибден), а также пассивирующие—палладий и никель.  [c.51]

И ОЛОВО, которые, видимо, не изменяют поведение титана, находясь в твердом растворе. Типичными представителями второй группы являются медь и германий, играющие роль разбавителей, т. е. в их присутствии эффективная концентрация титана уменьшается пропорционально количеству легирующего элемента а твердом растворе. Идеальный разбавитель должен уменьшать константу скорости реакции линейно от 5,2-10 см/с здо нуля при снижении до нуля концентрации титана в сплаве другими словами, удельная константа скорости реакции должна быть равна —0,052-10 (см/с /2)/ат.%. С увеличением в сплаве концентрации алюминия, молибдена или ванадия скорость реакции уменьшается значительно сильнее, чем для разбавителей. Эти элементы образуют третью группу. Из анализа данных табл. 3 следует, что ванадий эффективнее тормозит реакцию взаимодействия в разбавленных растворах, чем в концентрированных. На рис. 16 показано влияние различных типов легирующих элементов на константу скорости реакции при 1033 К. Экспериментальная кривая для сплавов титан — ванадий иллюстрирует влияние концентрации на константу скорости. Из этих результатов были рассчитаны удельные константы скорости реакции, отнесенные к весовым процентам. Они оказались равными для ванадия —0,32-10- , алюминия —0,14-10- , молибдена —0,17-Ю- (см/с 2)/вес.%.  [c.113]


Присутствие бора в переходной зоне, обогащенной углеродом, и другие факторы приводят к значительному росту зерна в этой зоне. Карбидообразующие элементы (хром, вольфрам, молибден) в значительной мере устраняют это явление. Однако присутствие этих элементов (а также ванадия) способствует сглаживанию зубчатого контура в нижней части слоя, что ухудшает сцепление. Легирующие элементы, сужающие -у-область (хром, титан, ванадий), препятствуют диффузии бора и существенно уменьшают глубину борированного слоя.  [c.42]

Легированием медью можно повысить твердость и износостойкость белого чугуна. Больший эффект можно ожидать при введении меди в сочетании с другими легирующими элементами (никелем, хромом, ванадием).  [c.78]

P и . 5. Влияние легирующих элементов на температуру рекристаллизации ванадия  [c.16]

Для легированных сталей применяют обозначения Н — никель, Г — марганец, С - кремний, Ю — алюминий, X — хром, М — молибден, В — вольфрам, Д — медь, Т — титан, Ф — ванадий. Буква А в конце обозначения означает высококачественную сталь, Ш — особовысококачественную. Цифра, стоящая справа от буквы, указывает процентное содержание легирующего элемента если содержание этого элемента не превышает 1,5%, цифра в обозначении не указывается.  [c.127]

Все быстрорежущие стали обозначают буквой Р (рапид — скорость), цифры после этой буквы показывают содержание основного легирующего элемента — вольфрама, а для поль-фрамомолибденовых сталей и содержание молибдена. Прп высоком содержании ванадия среднее содержание его также отмечается в марочном обозначении цифрой после буквы Ф, а содержание кобальта буквой К и соответствующими цифрами. Хрома во всех сталях содержится около 4%, а углб рода—  [c.421]

Обозначение марок легированных сталей производят по буквенноцифровой системе. Легирующие элементы обозначают следующи.ми буквами никель — Н, хром — X, вольфрам — В, ванадий — Ф,  [c.175]

При сварке легированных сталей диаграмма Fe—О — С существенно усложнится из-за образования более устойчивых, чем РезС, карбидов (легирующие элементы Сг, Мп, ванадий, ниобий, титан), а также из-за смещения границ растворимости карбидов в твердых растворах 7-Fe (никель).  [c.341]

В марках нержавеющих высоколегированных сталей по ГОСТ 5632—72 химические элементы обозначаются следующими буквами А — азот, В — вольфрам, Д — медь, М — молибден, Р—бор, Т — титан, Ю — алюминий, X—хром, Б — ннобнй, Г — марганец, Е — селен, Н — никель, С — кремний, Ф — ванадий, К — кобальт, Ц — цирконий. Цифры, стоящие в наименовании марки после букв, указывают, так же как и в наименовании марок конструкционных сталей, процентное содержание легирующего элемента в целых едишщах. Содержание элемента, присутствующего в стали в малых количествах, цифрами не обозначается. Цифра перед буквенным обозначением указывает на среднее или при отсутствии нижнего предела на максимальное содержание углерода в стали в сотых долях процента. Наименование марки литейной стали заканчивается буквой Л.  [c.49]

Влияние легирующих элементов на жаропрочность. Высокая жаропрочность стали достигается путем легирования ее хромом, никелем, молибденом, вольфрамом, ниобием, ванадием, кобальтом, титаном, азюминием. По мере увеличения в сплаве числа легирующих элементов и повышения их  [c.101]

Легированной называется сталь с присадками различных химических элементов, придаюш,их стали повышенные механические и другие свойства жаростойкости, коррозионной стойкости. В качестве легирующих элементов чаще всего применяются хром (X), никель (Н), вольфрам (В), ванадий (Ф), молибден (М).  [c.240]

Основными структурными составляющими двухстадийного комплексного диффузионного покрытия являются фазы p-NiAl и -(N1, Сг)зА1. Между параметрами решеток основных фаз никелевых сплавов и подслоя нихрома существует положительное размерное несоответствие. В наружной зоне покрытий концентрация легирующих элементов сплавов, таких как титан, ванадий, молибден, значительно ниже, чем при одностадийном формировании защитных покрытий.  [c.243]

Основным легирующим элементом в титановых сплавах является алюминий. За редким исключением, он присутствует во всех сплавах на основе титана. Поэтому значение системы Т1 —А1 для титановых сплавов можно сравнить со значением системы Ее —С для сталей. Следующими по важности и распространенности легирующими элементами являются ванадий и молибден, образующие с 0-фэзой титана непрерывный ряд твердых растворов. Применяют легирование промышленных сплавов Сг, Мп, Ее, Си, 8п, 2г, W. Для повышения стойкости титана в сильных коррозионных средах применяют "катодное" легирование в виде небольших добавок палладия и платины. Из неметаллов наиболее важное значение имеет ограниченное легирование кремнием, кислородом, углеродом, бором.  [c.11]

Отечественные а- и псевдо-а-сплавы с содержанием алюминия до 3,0 % (сплавы ОТ4-0, о14-1, ПТ-7М, АТЗ) практически не чувствительны к коррозионному растрескиванию. Так, сплав АТЗ имеет порюговое значение = 85 МПа При повышении содержания в нем алюминия до 6 % (сплав АТ6) снижается до 25 МПа л/м [29]. Следует отме-тить, что содержание в псевдо-а-сплавах других легирующих элементов может в некоторых случаях резко снизить отрицательное влияние алюминия даже при его высоком содержании. Так, сплав ПТ-ЗВ, содержащий около 5 % алюминия, но легированный еще 1,5—2,0 % ванадия, практически не чувствителен к коррозионному растрескиванию, у него >110 МПа /м. В то же время добавление в сплавы, содержащие более 4 % алюминия, элементов замещения, стабилизирующих а-фазу (олово) или нейтральных упрочнителей (цирконий) заметно увеличивает их склонность к коррозионному растрескиванию. Значительно снижает чувствительность титановых сплавов к коррозионному растрескиванию 38  [c.38]

Травйтель 17 [100 мл уксусной кислоты добавка бензидина]. Этот раствор опробовали Глузанов и Криволави [17]. Он позволяет по окраске определять хром в стальных и чугунных образцах, не оказывая влияния на марганец, никель, кобальт, вольфрам, ванадий, молибден, медь, титан и кремний. При обычной технике получения отпечатков хром придает через 10—30 с отпечатку темноватый голубой оттенок. При этом другие легирующие элементы в стали лишь едва растравливаются.  [c.107]


Цирконий вводят в белый чугун при получении ковкого чугуна (ЛЯ того, чтобы при обработке его в жидком состоянии получить )Олее высокие механические свойства за счет образования первич 1ЫХ чешуек графита в процессе затвердевания. При содержании в )елом чугуне до 0,09% цирконий аналогично титану связан прей лущественно в нитридах. Обработка жидкого чугуна циркониевым 10Дификатором усиливает влияние таких легирующих элементов, <ак хром, молибден и ванадий.  [c.63]


Смотреть страницы где упоминается термин Легирующие элементы ванадий : [c.243]    [c.243]    [c.375]    [c.294]    [c.240]    [c.17]    [c.155]    [c.208]    [c.28]    [c.160]    [c.179]    [c.84]    [c.24]    [c.133]    [c.8]   
Металлургия и материаловедение (1982) -- [ c.46 ]



ПОИСК



Ванадий 273, 275, ЗСО

Ванадит

Легирующие элементы



© 2025 Mash-xxl.info Реклама на сайте