Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эмиттер

Граница контактного окна к области эмиттера  [c.553]

Граница области эмиттера Граница разделительной области  [c.553]

Нанести условные позиционные обозначения элементов микросхемы шрифтом 5 эмиттера - Э, коллектора - К, базы транзисторов - Б, полярность диодов (область базы +, область коллектора -) - шрифтом 3,5 номера контактных площадок - шрифтом 7.  [c.553]

Если есть необходимость, - развернуть в транзисторах буквы, обозначающие базу Б, эмиттер Э, коллектор К.  [c.580]

Влияние ускоряющего поля. Эффект Шоттки. В практических условиях на поверхности электрода-эмиттера всегда существует поле, тормозящее или ускоряющее электроны. Если, например, анодное напряжение Ua положительно, но не очень велико, то вблизи катода накапливается отрицательный пространственный заряд. Его поле тормозит электроны и часть их возвращается обратно на катод.  [c.64]


Распределение потенциала приобретает вид, показанный на рис. 2.23, а для вакуумного диода. Потенциальный барьер продолжает подниматься вне металла еще на высоту AU сверх нормальной высоты барьера wa) /e = (pn обусловленной физическими свойствами эмиттера.  [c.64]

Увеличение эмиссии объясняется созданием у поверхности эмиттера дипольного слоя, обращенного положительным зарядами наружу.  [c.68]

Если накаленный эмиттер находится в парах какого-либо металла, то атомы падают на поверхность эмиттера, ненадолго адсорбируются ею и затем испаряются вновь. Часть из них испаряется в виде ионов. Такое явление получило название поверхностной ионизации.  [c.69]

Транзистор п — р — п р — п — р) — транзистор, у которого область базы имеет преимущественно дырочную (электронную) проводимость, а области эмиттера и коллектора имеют преимущественную электронную (дырочную) проводимость. Большинство типов выпускаемых транзисторов относятся к р—п—р транзисторам. Схемы для транзисторов р—я—р и п—р—п одинаковы, но полярность подключения источников питания противоположна если в р—п—р транзисторе на коллектор подается отрицательное напряжение по отношению к эмиттеру, то в п—р—п транзисторе — положительное [3, 4].  [c.158]

Т. е, электронного реле, имеющего только два устойчивых состояния, при каждом из которых один из транзисторов практически заперт, а через другой проходит максимальный ток. Схема может перебрасываться из одного состояния в другое с помощью импульсов, подаваемых на эмиттер или базу.  [c.170]

Транзисторы п — р — л-пере-хода имеют аналогичное устройство — только материал базы в них обладает дырочной проводимостью, а коллектор и эмиттер — электронной. Условное обозначение транзистора па схе мах представлено на рисунке 160.  [c.160]

Путем диффузии дырки распространяются из области с высокой концентрацией вблизи эмиттера в область с низкой концентрацией к коллектору. Дырки, достигающие коллекторного р — л-перехода, втягиваются его полем и переходят в коллектор.  [c.160]

Небольшая доля дырок, движущихся от эмиттера к коллектору (1—5%), встречает на своем пути через базу электроны и рекомбинирует с ними. Убыль электронов в базе за счет рекомбинации восполняется приходом электронов через базовый вывод. Таким образом, ток, протекающий через эмиттерный вывод транзистора в активном состоянии 1 , оказывается равным сумме токов, протекающих через его коллекторный и базовый выводы  [c.160]

Усилительные спойства транзистора. Способность транзистора распределять ток эмиттера в заданном соотношении между коллектором и базой может быть использована для усиления электрических сигналов. Отношение изменения силы тока в цепи коллектора к изменению тока в цепи базы A/g при постоянном напряжении на коллекторе для каждого транзистора есть вели- шна постоянная, называемая интегральным коэффициентом передачи базового тока (3  [c.161]


При включении транзистора по схеме, представленной на рисунке 162 (схема с общим эмиттером), отношение изменения тока коллектора к изменению тока базы Л/ является отношением изменения выходного тока А/дых к изменению входного тока A/jj. Это отношение называется коэффициентом усиления по току  [c.161]

Входное сопротивление транзистора, включенного по схеме с общим эмиттером, обычно составляет несколько сотен ом. Коэффициент усиления транзисторного каскада по напряжению при условии может пре-  [c.162]

Изменением знака напряжения, подаваемого между базой и эмиттером, можно включать и выключать ток, протекающий через коллекторный вывод транзистора. В качестве бесконтактных переключательных элементов транзисторы используются в различных приборах автоматического управления, электронных вычислительных машинах.  [c.162]

При зарядке и разрядке конденсатора колебательного контура изменения силы тока в катушке Lk контура вызывают изменения магнитного поля вокруг нее. При этом происходят изменения магнитного потока и возникает ЭДС индукции во второй катушке Lqb, называемой катушкой обратной связи. Один конец катушки обратной связи соединен с эмиттером транзистора, второй через конденсатор С — с его базой. Катушка обратной связи включена таким образом, что при увеличении силы тока в цепи коллектора на базу подается напряжение, отпирающее транзистор  [c.235]

Однако увеличение амплитуды колебаний напряжения в электрическом контуре не продолжается беспредельно. Объясняется это нелинейной зависимостью напряжения на выходе транзистора от напряжения на его входе. При возрастании напряжения между базой и эмиттером сила тока через транзистор увеличивается, однако это возрастание с увеличением напряжения между базой и эмиттером становится все  [c.236]

Для усиления фототока в фотоэлектронных умножителях использовано явление вторичной электронной эмиссии. Оно заключается в том, что бомбардировка пучком электронов поверхности металла, полупроводника или диэлектрика при некоторых условиях вызывает эмиссию вторичных электронов, которую обычно характеризуют коэффициентом вторичной эмиссии а — отношением числа выбитых электронов к числу падающих. Этот коэффициент зависит от многих параметров (вида и состояния поверхности, скорости и угла падения пучка электронов и т.д.) и для некоторых веществ может достигать больших значений (10 и выше). В частности, легко получается значительное усиление сигнала при использовании в качестве материала эмиттеров сплава сурьмы и цезия. Приводимая на рис. 8.18 схема иллюстрирует возможность усиления электронных токов за счет вторичной эмиссии.  [c.438]

Конечно, для этого нужно, чтобы между эмиттерами прикладывалась вполне определенная разность по-  [c.438]

Особенно большое усиление фототока дают многокаскадные фотоумножители (рис. 26.18). Фотоэлектроны с катода ускоряются в электрическом иоле и, попадая на эмиттер Э[, выбивают из него в а раз большее число электронов. Эти электроны, ускоряясь, в свою очередь попадают на Эг, выбивая из него еще большее число электронов, и т. д. Последним электродом является апод-коллектор А. Для того чтобы электроны следовали по необходимым направлениям, электродам придают специальную форму и сообщают им нужные потенциалы. Если обозначить число эмиттеров через п, то ток в цепи коллектора к = 1оп", где о — первичный ток катода. При а = 4 и п=10 коэффициент усиления фотоэлектронного умножителя Л1 = 6(Д о равен примерно 10 ,  [c.172]

Тело, испускающее электроны или ионы, называется эмиттером. Для наблюдения и использования электронной или ионной эмиссии необходимо создать у поверхности эмиттера электрическое поле, отсасывающее эмитированные частицы. Обычно для достижения эмиссионным током насыщения достаточно приложить небольшое поле (десятки или сотни вольт на сантиметр). В случае полевой эмиссии внешнее электрическое поле превращает потенциальный порог, существующий на границе тела и препятствующий выходу электронов, в барьер конечной ширины и уменьшает его высоту, вследствие чего становится возможным квантовомеханическое туннелирование электронов сквозь барьер. При этом энергия электрического поля затрачивается только на ускорение эмитированных электронов. Для возникновения полевой эмиссии необходимо приложить к телу сильное электрическое поле (I 10 В/см), при этом плотность тока может достигнуть 10 А/см . При еще больших импульсных полях локальные участки эмиттера (выступы, заострения) сильно разогреваются (чаще всего током полевой эмиссии) и взрываются. Часть вещества эмиттера переходит из конденсированной фазы в плотную плазму. Этот процесс сопровождается испусканием интенсивного электронного потока — возникает взрывная электронная эмиссия. Монографии и обзоры по эмиссионной электронике и различным видам эмиттеров приведены в [1—4,  [c.567]


Важнейшей эмиссионной характеристикой твердых тел является работа выхода еср (е — заряд электрона, Ф — потенциал), равная минимальной энергии, которая необходима для перемещения электрона с поверхности Ферми в теле в вакуум, в точку пространства, где напряженность электрического поля практически равна нулю [1]. Если отсчитывать потенциал от уровня, соответствующего покоящемуся электрону в вакууме, то ф— потенциал внутри кристалла, отвечающий уровню Ферми. Согласно современным представлениям в поверхностный потенциальный барьер, при преодолении которого и совершается работа выхода, основной вклад вносят обменные и корреляционные эффекты, а также — в меньшей степени — электрический двойной слой у поверхности тела. Наиболее распространенные методы экспериментального определения работы выхода — эмиссионные по температурной, спектральной или полевой зависимости соответственно термо- фото- или полевой эмиссии, а также по измерению контактной разности потенциалов между исследуемым телом и другим телом (анодом), работа выхода которого известна [I, 2]. В табл. 25.1, 25.3 и 25.4 приведены значения работы выхода простых веществ и некоторых соединений. Внешнее электрическое поле уменьшает работу выхода (эффект Шоттки). Если поверхность эмиттера однородна, то уменьшение работы выхода. эВ, при наложении электрического поля напряженностью В/см, равно  [c.567]

Характеристики эффективных эмиттеров вторичных электронов приведены в табл. 25.22—25.24 и на рис. 25.39—25.43, где Ер п— энергия первичных электронов, при которой достигается максимальное значение коэффициента вторичной электронной эмиссии От-  [c.582]

Эквивалентная схема биполярного транзисто-р а представлена на рис. 2.17,6. Так как транзистор состоит из двух р-и-переходов эмиттер-база и коллектор-база, то элементы /э. Со, Ryo, С , / ук — элементы соответствующих р-п-переходов, h — Blg—BJk — источник тока, отражающий пролет неосновных носителей через базу и определяющий усилительные свойства транзистора В и — нормальный и инверсный коэффициенты усиления тока), Гэ, и гв — объемные сопротивления областей соответственно эмиттера, коллектора и базы.  [c.91]

Формула Ричардсона — Дешмана. Плотность термоэмиссионного тока. Если число электронов, выходящих из эмиттера через выбранный участок поверхности за единицу времени, равно то плотность термоэмиссионного тока  [c.62]

Фотоэмиссия. При поглощении эмиттером светового излучения могут появиться электроны настолько большой энергии, что некоторые из них преодолевают барьер и оказываются эмитти-рованными. Это явление известно под названием внешнего фотоэффекта. Для металлов условие возникновения фотоэмиссии (закон Энштейна) имеет вид  [c.66]

Спейсистор — транзистор, в котором носители заряда инжектируются из эмиттера в обедненный слой обратно-смещенного перехода управление током осуществляется электродом, введенным в пределы обедненного слоя так как в приборе не используется диффузия неосновных носителей, то его можно теоретически применять на частотах до 1 ГГц, однако практического применения спейсисторы не получили из-за несовершенства конструкций [9].  [c.153]

Умножитель фотоэлектронный сквозного действия — фотоумножитель, эмиттеры которого выполнены в виде сеток или металлических пластин типа жалюзи вторичные электроны, испускаемые предыдущим эмиттером, попадают на последующий эмиттер непосредственно под действием разности потенциалов на этих эмиттерах необходимость ( кусировки электронов при такой конструкции фотоумножителя отпадает [3 ].  [c.162]

Фототранэистор — фотоэлектрический полупроводниковый прибор с двумя р—п переходами, у которого обычно база не имеет электрического вывода, а носители зарядов возбуждаются лучистой энергией, падающей на базу, которая на большей своей площади имеет прозрачное покрытие для излучения в рабочем диапазоне частот используется в качестве фоторезистора, но имеет большую чувствительность включается по схеме, аналогичной схеме с обш,им эмиттером [3, 4 ].  [c.163]

Основным рабочим состоянием транзистора в большинстве электрических схем является активное сос тояние, при котором к эмиттерному р — и-переходу приложено напряж(зние в пропускном направлении, а к коллекторному — в запирающем направлении. При этом эмиттер-ный р — л-переход открывается и из эмиттера в базу переходят дырки.  [c.160]

Совершенно ясно, что важно не только создать бо.пьшее число вторичных электронов, но и сфокусировать электронные потоки так, чтобы подавляющее число выбитых электронов достигло следующего эмиттера. Фокусировка вторичных электронов осуществляется различными способами. Наибольшее распространение получили умножители, в которых конфигурация и расположение фотокатода и эмиттеров подобраны так, что создаваемые ими электрические поля обеспечивают оптимальные условия прохождения электронного пучка (рис. 8.19).  [c.438]

Вторичная электронная эмиссия широко используется для усиления слабых токов, в частности фототоков. Такие устройства называются фотоэлектронными умножителями. Схематическое изображение одиокаскадного фотоэлектронного умножителя приведено на рис. 26.17. Фотоэлектроны, вырываемые светом из фотокатода К, ускоряются электрическим полем, и значительная их часть, пролетая сквозь анод А, представляющий собой сетку, попадает на вторичный эмиттер. Выбитые из него электроны меньших скоростей, чем первичные, собираются анодом. Такие фотоумножители позволяют получать 10—20-кратг[ое усиление фототока.  [c.172]

Плотность тока насыщения термоэлектронной эмиссии (ТЭ) для эмиттера с однородной поверхностью при слабом внешнем электрическом поле, не влияющем на работу выхода, определяется уравнением Ричардсона — Дэшмана [2]  [c.570]


Основные закономерности ВЭЭ. Электроны, бомбардирующие поверхность тела, называются первичными электроны, эмитированные телом, — вторичными. Вторичные электроны могут эмитироваться как со стороны облучаемой первичным пучком поверхности тела (ВЭЭ на отражение ), так и — в тонкопленочных эмиттерах — со стороны поверхности, противоположной облучаемой (ВЭЭ на прострел ). Основной характеристикой вторично-электронных эмиттеров является зависимость а —коэффициента ВЭЭ от энергии Ер первичных электронов. Коэффициент ВЭЭ есть отношение числа электронов Л г, испускаемых телом, к числу падающих на него за то же время первичных электронов N a=N2lNi=  [c.582]

Эффективные эмиттеры вторичных электронов. Эффективные эмиттеры фотоэлектронов сурьмяно-цезие-вый, многощелочной, фотоэмиттеры с ОЭС и другие — одновременно являются эффективными эмиттерами вторичных электронов. Широкое распространение получили также эффективные эмиттеры вторичных электронов на основе сплавов магния, бериллия и некоторых других элементов. Эти эмиттеры представляют собой слой оксида соответствующего металла на поверхности исходного сплава (Ag—Mg, А1—Mg, Си—Be, Ni—Be и т. п.). В канальных вторичных электронных умножителях используются эмиттеры вторичных электронов из проводящих стекол.  [c.582]


Смотреть страницы где упоминается термин Эмиттер : [c.194]    [c.583]    [c.91]    [c.149]    [c.160]    [c.160]    [c.161]    [c.236]    [c.253]    [c.167]    [c.575]    [c.582]    [c.582]    [c.585]   
Теоретические основы теплотехники Теплотехнический эксперимент Книга2 (2001) -- [ c.520 ]

Электрооборудование автомобилей (1993) -- [ c.50 ]

Справочное руководство по физике (0) -- [ c.237 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте