Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термическое сопротивление переноса теплоты теплопроводностью

Наиболее простым, но достаточно распространенным является случай, когда удельное термическое сопротивление теплоотдачи 1/а от греющей среды к рассматриваемому телу значительно больше удельного термического сопротивления переносу теплоты теплопроводностью внутри тела от его поверхности  [c.110]

Число Био характеризует отношение термического сопротивления переносу теплоты теплопроводностью от середины твердого тела к поверхности Rx = b/(XF) к термическому сопротивлению теплоотдачи Ra,= / a.F). Условие (14.1) для термически тонкого тела можно записать в виде Bi- -0 (практически Bi<0,l).  [c.113]


Термическое сопротивление переноса теплоты теплопроводностью 73 -- контактное 74  [c.222]

Число Био характеризует отношение термического сопротивления переносу теплоты теплопроводностью от середины твердого тела  [c.120]

С учетом тер.мического сопротивления теплопроводности пленки для полного термического сопротивления переносу теплоты от пара к стенке можно написать в первом приближении выражение  [c.21]

Поскольку перенос поперек турбулентного пограничного слоя намного интенсивнее, чем в ламинарном слое, это способствует выравниванию скоростей и температур. Профили скорости и температуры в турбулентном ядре пограничного слоя более плоские по сравнению с ламинарным пограничным слоем. Основное изменение скорости и температуры происходит в тонком пристенном слое жидкости, в котором затухают турбулентные пульсации и который называется вязким подслоем. Изменение температуры и скорости в вязком подслое происходит по закону прямой линии. Вязкий подслой представляет собой основное термическое сопротивление переносу теплоты между жидкостью и стенкой. Это сопротивление тем больше, чем больше толщина вязкого подслоя бп и чем меньше теплопроводность жидкости.  [c.262]

Заполнение канала пористым высокотеплопроводным материапом вызывает качественное изменение механизма переноса теплоты и структуры потока теплоносителя также и при фазовых превращениях. Здесь перенос теплоты теплопроводностью от стенки через пористый каркас (или в обратном направлении) исключает высокое термическое сопротивление у стенки, создаваемое сплошной паровой пленкой при испарении теплоносителя или сплошной пленкой конденсата при конденсации потока пара в гладких каналах. Это позволяет полностью завершить фаг зовое превращение потока теплоносителя при высокой интенсивности теплообмена. Кроме того, капиллярные силы обеспечивают равномерную насыщенность проницаемой матрицы жидкостью поперек канала.  [c.117]

Затем теплота теплопроводностью переносится от одной поверхности стенки к другой. Термическое сопротивление теплопроводности R>. рассчитывается по формулам, приведенным в 8.3, в зависимости от вида стенки  [c.97]

Контактное термическое сопротивление зависит от шероховатости поверхностей, давления, прижимающего две поверхности одна к другой, и свойств среды в зазорах с учетом температуры в зоне контакта. Механизм передачи теплоты в зоне контакта довольно сложен. В местах непосредственного контакта твердых поверхностей теплота переносится путем теплопроводности, а в зазорах, заполненных газом или жидкостью, — путем конвекции и излучения. Если пренебречь излучением между поверхностями, разделенными газовой прослойкой, то термическое сопротивление в зоне контакта равно сумме термических сопротивлений фактического контакта Rф и газовой прослойки Rк = R - Rг.  [c.291]


В ламинарном потоке теплота поперек течения передается теплопроводностью, в турбулентном — теплопроводностью и конвекцией. Так как у неметаллических теплоносителей коэффициент теплопроводности сравнительно невелик, в турбулентном ядре теплота в,основном переносится конвекцией. При этом основным термическим сопротивлением при передаче теплоты поперек турбулентного потока является вязкий подслой. В результате основное изменение температуры жидкости в поперечном сечении сосредоточивается у стенки, в турбулентном ядре температура изменяется сравнительно мало (рис. 11-1). В жидких металлах теплопроводность велика и может конкурировать с процессом  [c.242]

Перенос теплоты в пограничном слое происходит в основном за счет теплопроводности жидкости. Наоборот, вдали от стенки теплота переносится вместе с частицами жидкости, которые беспорядочно перемещаются, в том числе и поперек потока. Основное термическое сопротивление при конвективном теплообмене возникает в пограничном слое, поэтому он наиболее существенно влияет на теплоотдачу.  [c.130]

Термическое сопротивление пленки конденсата зависит от режима течения. Поперек ламинарно текущей пленки теплота переносится за счет теплопроводности, через турбулентную — дополнительно и конвекцией. Сопротивление прямо пропорционально толщине слоя кон-  [c.261]

Однако это требование ие может быть выполнено на практике. Даже если реакция с участием образца не сопровождается изменением удельной теплоемкости, изменение температуры образца во времени можно воспроизвести только с помощью электрического нагревания. Этот подход порождает другие ошибки. Очевидно, что вклад теплопроводности через термическое сопротивление должен быть преобладающим в такой степени, чтобы любым изменением относительных долей других механизмов переноса теплоты можно было пренебречь. Поэтому термическое сопротивление не должно превышать определенного максимального значения, хотя такое требование и ограничивает чувствительность калориметра.  [c.120]

Режим движения жидкости определяет механизм переноса теплоты в процессе теплоотдачи. При ламинарном движении перенос теплоты от жидкости к стенке (или наоборот) осуществляется главным образом путем теплопроводности. При турбулентном движении такой способ передачи теплоты наблюдается лишь в ламинарном пограничном слое, а внутри турбулентного ядра теплота переносится путем конвекции. При этом на интенсивность теплоотдачи в основном влияет термическое сопротивление пограничного слоя. Последнее наглядно иллюстрируется рис. 14.2, на котором представлена схема движения жидкости при обтекании плоской поверхности (пластины).  [c.225]

Процесс отвода теплоты посредством конвекции представляет собой довольно сложное физическое явление, зависящее от целого ряда факторов, таких, например, как форма и геометрические размеры охлаждаемого тела, теплофизические свойства, температура, скорость и характер движения воздуха. При вращении муфты поток омывающего ее воздуха имеет турбулентный характер, при котором основную роль в термическом и гидродинамическом сопротивлении играет пограничный слой. Вследствие вязкости воздуха относительная скорость его частиц, непосредственно примыкающих к наружной поверхности муфты, становится равной нулю. В тонком пограничном слое перенос теплоты по нормали к поверхности осуществляется в основном за счет теплопроводности.  [c.38]

Большинство теплоизоляторов состоит из волокнистой, порошковой или пористой основы, заполненной воздухом. Термическое сопротивление теплоизоля-тора создает воздух, а основа лишь препятствует возникновению естественной конвекции воздуха и переносу теплоты излучением. Сама основа в плотном состоянии обычно обладает достаточно высокой теплопроводностью [>. 1Вт/(м-К)1, поэтому с увеличением плотности набивки минеральной ваты, асбеста или другого теплоизолятора их теплопроводность возрастает. С увеличением температуры коэффициент теплопроводности теплоизоляции также растет из-за увеличения теплопроводности воздуха и усиления теплопереноса излучением.  [c.101]


Качественно новые свойства достигаются при фазовом превращении потока теплоносителя внутри примыкающего к сплошной стенке проницаемого материала. В первую очередь, перенос теплоты от стенки теплопроводностью через пористый каркас (или в обратном направлении) исключает высокое термическое сопротивление у стенки, создаваемое сплошной паровой пленкой при кипении теплоносителя или сплошной пленкой конденсата при конденсации потока пара. Это позволяет полностью осуществить фазовое превращение потока при высокой интенсивности теплообмена. Кроме того, капиллярные силы создают равномерную насыщенность пористой структуры жидкостью, чем устраняется расслоение двухфазного потока в канале под действием внешних сил. Поэтому такой способ организации форсированного теплообмена при фазовых превращениях типичен, например, для систем при изменении их ориентацш относительно направления силы тяжести или в условиях пониженной гравитации.  [c.14]

Для уменьшения потерь теплоты многие сооружения приходится теплоизолировать, покрывая их стенки слоем материала с малой теплопроводностью >.<0,2 Вт/(м-К)). Такие материалы называются теп-лоизоляторами. Большинство теплоизоляторов состоит из волокнистой, порошковой и пористой основы, заполненной воздухом. Термическое сопротивление теплоизолятора создает воздух, а основа лишь препятствует возникновению естественной конвекции воздуха и переносу теплоты излучением  [c.26]


Теплотехника (1991) -- [ c.73 ]

Теплотехника (1980) -- [ c.76 ]



ПОИСК



Переносье

Теплота переноса

Термическое сопротивление

Термическое сопротивление переноса

Термическое сопротивление переноса теплоты

Термическое сопротивление теплопроводности

Ток переноса



© 2025 Mash-xxl.info Реклама на сайте