Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегрирование дифференциальных уравнений покоя жидкости

Относительный покой жидкости в движущемся сосуде имеет, есто, когда жидкость перемещается вместе с ним как твердое тело так, что ее частицы не смещаются относительно сосуда. Закон распределения давления находится путем интегрирования дифференциального уравнения равновесия  [c.615]

Первый коэффициент вязкости х является основным. Для его определения существует множество различных способов, основанных на применении тех конечных формул, которые могут быть получены в результате интегрирования соответственных дифференциальных уравнений с использованием соотношений (11.18) для частных случаев движения жидкости. О некоторых из этих способов мы будем говорить ниже. Что же касается второго коэффициента вязкости, необходимость учёта которого может возникать только при рассмотрении того движения жидкости или газа, в котором явно проявляется свойство их сжимаемости, то до последнего времени его совершенно не учитЬвали. И только в связи с исследованиями Л. И. Мандельштама и М. А. Леонтовича ) влияния внутренних процессов с большим временем релаксации на распространение звука в жидкости было указано на необходимость учёта второго коэффициента вязкости. В отдельных случаях значение второго коэффициента вязкости может намного превышать значение основного коэффициента вязкости. Но приборов по определению второго коэффициента вязкости пока пе предложено.  [c.66]


На первый взгляд можно подумать, что турбулентный пограничный слой на пластине или на любом другом теле можно рассчитать на основании уравнений движения (19.3а) и (19.36) так же, как ламинарный пограничный слой, с той только разницей, что учет сил трения необходимо производить одним из способов, указанных в главе XIX. Однако до настоящего времени такой расчет турбулентного пограничного слоя выполнить невозможно, так как пока мы не знаем, во-первых, характера смыкания турбулентного пограничного слоя с ламинарным подслоем, всегда существующим в непосредственной близости от стенки, и, во-вторых, закона трения в этой переходной области. В этом отношении в более выгодном положении находятся задачи связанные со свободной турбулентностью (глава XXIV), т. е. с такими турбулентными течениями, которые не ограничены какими-либо стенками. Примерами свободной турбулентности могут служить смешение струи с окружающей ее неподвижной жидкостью или размыв следа позади тела. Такого рода чисто турбулентные течения могут быть рассчитаны на основе дифференциальных уравнений в сочетании с эмпирическими законами турбулентного трения. В задачах же, связанных с турбулентным пограничным слоем, интегрирование уравнений движения весьма затруднительно поэтому для расчета турбулентного пограничного слоя пока приходится прибегать главным образом к приближенным методам, сходным с приближенными методами, разработанными для расчета ламинарного пограничного слоя. Приближенные методы для расчета турбулентного пограничного слоя также основаны в первую очередь на теореме импульсов, с успехом используемой для расчета ламинарного пограничного слоя.  [c.571]

Введение. Дифференциальные уравнения Навье—Стокса представляют собой систему нелинейных уравнений в частных производных второго порядка. Точные аналитические решения этих уравнений в подавляюш ем большинстве случаев встречают не преодоленные пока еш,е трудности. Число известных в настояш ее время точных решений весьма невелико. Поэтому при интегрировании уравнений Навье— Стокса получили сравнительно широкое распространение и численные приближенные аналитические методы. К числу последних и относится теория гидродинамического пограничного слоя. Основная идея и первоначальная разработка этой теории принадлежат Прандтлю [251, который в 1904 г. пришел к выводу о том, что между потоком жидкости или газа и плавно омываемым ими телом при достаточно большом числе Рейнольдса существует тонкий пограничный слой, в котором сосредоточено почти все вязкое трение. Вне этого тонкого слоя силы вязкости пренебрежимо малы, и в этом случае жидкость (или газ) можно рассматривать в качестве невязкой.  [c.256]



Смотреть главы в:

Гидравлика Изд.3  -> Интегрирование дифференциальных уравнений покоя жидкости



ПОИСК



283 — Уравнения жидкости

Дифференциальное уравнение покоя жидкости

Интегрирование

Интегрирование дифференциальных

Интегрирование дифференциальных уравнений

Интегрирование уравнений



© 2025 Mash-xxl.info Реклама на сайте