Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ионосферное распространение радиоволн

ИОНОСФЕРНОЕ РАСПРОСТРАНЕНИЕ РАДИОВОЛН  [c.213]

Замирания сигналов отмечаются не только при тропосферном распространении, но и в ряде других случаев, поэтому изучаемый в настоящем параграфе материал в одинаковой мере относится ко всем видам замираний, в том числе и к возникающим при ионосферном распространении радиоволн.  [c.160]

Отметим, что подобное явление в конце 40-х годов было открыто при распространении радиоволн. Было обнаружено, что на ультракоротких волнах (метровый и сантиметровый диапазон волн), распространяющихся только в пределах прямой видимости, возможен прием сигналов далеко за пределами прямой видимости. При этом такой прием не связан с образованиями слоев коэффициента преломления для радиоволн, которые могли бы служить своеобразными каналами или волноводами и приводить к сверхдальнему распространению радиоволн. В дальнейшем было предположено и в значительной степени это предположение было обосновано как теоретически, так и экспериментально, что такой прием сигналов за радиогоризонтом оказывается возможным благодаря рассеянию радиоволн в объеме пересечения характеристик направленности передатчика и приемника. Это рассеяние, так же как и рассеяние звука, вызывается неоднородностями коэффициента преломления для радиоволн. Только в отличие от звука (когда флюктуации коэффициента преломления вызваны пульсациями скорости и температуры) эти неоднородности, также вызываемые турбулентностью атмосферы, состоят в флюктуациях температуры и влажности. Температуру и влажность можно рассматривать как некоторые пассивные примеси, которые перемешиваются полем пульсаций скоростей турбулентного потока. Сами по себе относительные отклонения коэффициента преломления от среднего значения чрезвычайно малы и составляют для обычных условий состояния атмосферы всего каких-нибудь несколько единиц на 10" , тем не менее они оказываются достаточными для того, чтобы принимать рассеянный сигнал далеко за горизонтом, при достаточной мощности радиопередатчика и достаточной чувствительности приемника. Такое рассеяние радиоволн (его называют тропосферным рассеянием) дает возможность осуществлять радиосвязь (правда, не всегда устойчивую) на расстоянии порядка нескольких сот километров. Рассеяние радиоволн подобного же типа на неоднородностях коэффициента преломления в ионосфере (такое рассеяние называют ионосферным рассеянием), благодаря расположению объема V на большей высоте над земной поверхностью, дает возможность осуществления радиосвязи на расстояния свыше 1000 км. Ясно, насколько важны эти явления рассеяния они могут дать возможность осуществления телевизионных передач и радиосвязи на ультракоротких волнах далеко за пределы прямой видимости.  [c.244]


Наблюдения небесных объектов при помощи радиотехнических средств измерения отягощены влиянием ионосферной, или электронной рефракции, обусловленной изменениями направления при распространении радиоволн в атмосфере и ионосфере Земли.  [c.132]

При распространении радиоволн через ионосферу наблюдалось их мерцание в диапазоне частот от 10 МГц до 6 ГГц. Обзор современного состояния исследований ионосферных мерцаний дан в работах [82, 294].  [c.99]

Впервые изучающие курс распространения радиоволн обычно /встречаются с известными трудностями в вопросе о том, волны каких диапазонов распространяются как земные, тропосферные и ионосферные. Чтобы облегчить понимание этого вопроса, ниже даются общие указания. На близких расстояниях от передатчика волны всех диапазонов распространяются как земные.  [c.16]

Процесс распространения радиоволн над поверхностью Земли неразрывно связан с явлением поглощения энергии волны и со всякого рода потерями энергии. При распространении земных волн энергия, во-первых, теряется из-за проникновения радиоволн в толщу Земли, а также вследствие дифракционных потерь энергии, так как лишь небольшая доля энергии волны огибает выпуклость земного шара. При распространении тропосферных волн основной поток энергии волны проходит сквозь тропосферу и лишь небольшая доля его рассеивается тропосферой, образуя полезный поток энергии. Ионосферные волны претерпевают потери при проникновении сквозь полупроводящие ионизированные слой  [c.25]

Из ф-л (1.19) и (1.20) следует, что с точки зрения распространения радиоволн основной задачей расчета линий связи, параметры которых не меняются во времени, является умение определять, величину множителя ослабления Р в разных условиях распространения земных, тропосферных и ионосферных волн. К определению множителя ослабления при различных встречаемых в практике-случаях распространения радиоволн и сводится, по существу, основное содержание дальнейших разделов книги.  [c.27]

При исследовании распространения радиоволн в ионосфере знание фазовой окорости необходимо для рассмотрения процессов преломления и отражения, ибо форма траектории определяется в конечном счете фазовой скоростью. Знание групповой скорости необходимо при измерении времени запаздывания радиоволн, отражаемых от ионосферы. Практически знание групповой скорости требуется при обработке результатов измерений на ионосферных станциях.  [c.218]


По способу распространения различают свободно распространяющиеся радиоволны, земные, тропосферные и ионосферные.  [c.325]

При рассмотрении процесса распространения ионосферных радиоволн необходимо принимать во внимание то обстоятельство, что радиоволны проходят свой путь в ионизированном газе, находящемся в постоянном магнитном поле Земли. Среднее значение напряженности магнитного поля Земли составляет при-  [c.218]

Помехи от соседних передатчиков в диапазонах декаметровых и метровых волн, а также километровых и гектометровых волн в ночное время являются следствием тропосферного или ионосферного распространения радиоволн, и их значения в сильной степени изменяются во времени. Поэтому устанавливают норму процента времени появления помех, в течение которой не выполняется условие (11.4).  [c.318]

Диагностика магнитосферных и ионосферных процессов имеет важное значе]1ие для определения условий распространения радиоволн, радиац. опасности на высотах полёта ИСЗ и т. п. Нек-рые вариации ПКМП могут оказывать влияние на живые организмы иредколагается пек-рое влияние ПКМП на атм. процессы и формирование погоды.  [c.82]

ИОНОСФЕРНЫЙ ВОЛНОВОД — область пространства между поверхностью Земли и ионосферой, внутри к-рой происходит локализация радиоволн. Наряду с И. в., ниж. границей к-рого служит поверхность Земли, существуют приподнятые И. в. Локализация радиоволн в таких И. в. осуществляется как за счет пе.мопо-тонного распределения ионосферной плазмы по высоте, так и за счёт сферичности Земли. В лучевом приближении распространение радиоволн в И. в. подобно движению классич, частицы в поле с потенциалом —t (z = = м (z)-(-2z/7 , где e(z) — ди.электрич. проницаемость среды, Z — высота над поверхностью Земли, И — радиус Земли, 2<Л. Роль уровня онергни для излучателя на поверхности Земли играет величина ё — — соа а, гдо а— угол излучения, составляемый волновым вектором с горизонталью. Минимумы и (z) соответствуют И, в. Поведение u(z) изображено на рис.  [c.215]

КОРОТКИЕ ВОЛНЫ (декаметровые волны) — радиоволны в диапазоне длин волн от 10 до 100 м SO—3 МГц). На характер их распространения сильно влияет ионосфера Земли. Загоризонтное раснространепис К. в, осуществляется пройм, путем их отражения от ионосферы или многократного отражения от ионосферы и поверхности Земли. На небольшое расстояние ( 500 км) К. в. могут распространяться в виде земной волны.. Возможно и сверхдальнее, в частности кругосветное, расиростраиенне ) . в. вдоль ионосферных волноводов (см. Волноводное распространение радиоволн).  [c.464]

МЕТРОВЫЕ ВОЛНЫ — радиоволны в диапазоне частот от 30 до 300 МГц (длины волн 1—10 м). М. в. распространяются преим. как земные волны в пределах прямой видимости на расстояния до неск. десятков км. Характеристики распространения М. в. существенно зависят от рельефа местности и типа подстилающей поверхности. Влияние атмосферы Земли выражается в рассеянии М. в. слабыми неоднородностями ионосферы и тропосферы, отражении М. в. от ионизиров. следов метеоров и искусств, ионизиров. областей в атмосфере, что приводит к дальнему (на расстояния до 2 тыс. км) распространению М. в. (см. Загаризонтное распространение радиоволн, Метеорная радиосвязь). М. В. широко используют в радиовещании и телевидении, в метеорных системах связи и радиолиниях ионосферного рассеяния, а также при диагностике ионосферной плазмы с борта ИСЗ, ракет и т. п.  [c.126]

Нерезонансное П. р. может происходить из-за конечной проводимости коаксиальных кабелей, волноводов и т. и. при распространении радиоволн в фидерных СВЧ-линиях питания приёмно-передающего оборудования (см. Волновод металлический) из-за конечной проводимости земной поверхности при раснростране-нии земной волны (см. Распространение радиоволн) за счёт затрат энергии радиоволны на преодоление взаимного трения молекул газа, обладающих электрич. и маги, моментами, и частиц гидрометеоров (дождя, града и т. и.) при распространении волн в тропосфере из-за трения электронов, находящихся под воздействием эл.-магн. поли радиоволны, с ионами и нейтральными частицами плазмы при распространении волн в ионосферной и космич. плазме. Резонансное П. р. в тропосфере обусловлено переходом молекул газа в более высокие энергетич. состояния за счёт энергии радиоволны. Оно достигает максимума при совпадении частоты волны с одной из частот разрешённых квантовых переходов (см. Квантовая электроника. Радиоспектроскопия).  [c.660]


СРЕДНИЕ ВОЛНЫ — электромагнитные волны ср. частоты (0,3—3 МГц), длины к-рых лежат в интервале 100—1000 м. Условия распространения волн этого диапазона и характер изменения этих условий ото дня к ночи примерно одинаковы для волн всего диапазона. В дневные часы С. в. распространяются, как правило, в виде земной волны, поскольку уровня ионизаций ионосферного слоя Л недостаточно для отражения от него С. в., а поглощение в слое В столь велико, что для этих волн он практически непрозрачен (см. Ионосфера). В ночные часы слой В исчезает, С. в. достигают слоя Е и отражаются от него по законам геом. оптики. Условия распространения земной волны практически не зависят от времени суток и определяются состоянием подстилающей поверхности (см. Распространение радиоволн), Макс, дальность распространения земной волны при существующих мощностях излучателей не превышает над сушей 500 км. В ночные часы результирующее поле волны в точке приёма вследствие флуктуац. изменений отражающих свойств ионосферы подвержено случайным колебаниям и характеризуется замираниями сигналов. Наиб, сильно замирания С. в. проявляются на расстояниях, где результирующее поле является суперпозицией волн — земной и отражённой от слоя Е. Характеристики С. в., отражённых от слоя Е полностью, определяются свойствами слоя и слабо зависят от 11-летнего цикла солнечной активности и новосфер-  [c.655]

V — частота столкновения электронов плазмы с др. частицами. Если плазма помещена в магнитное ноле ii, то она становится анизотропной (гиротропной). П. р. в ней зависит от направления распространения радиоволн но отно1нению к вектору Н поглощение в гиротропной плазме особенно существенно вблизи гиромагнитной частоты. Гиротроппыми свойствами обладают также ферриты в магнитном поле и нек-рые др. материалы. Это необходимо учитывать как при расчете линий коротковолновой радиосвязи, где существенны свойства ионосферной плазмы, так и при конструировании волноводных элементов с ферритами.  [c.70]

При дальнейшем рассмотрении процессов дальнего тропосферного и ионосферного распространения укв мы будем интерпретировать ряд жспернменталшо выявленных закономернск тей . пользуясь первой гипотезой, т. е. теорией рассеяния радиоволн на локальных неоднородностях диэлектрической проницаемости.  [c.8]

В целом подчеркнута роль флуктуационных процессов при распространении радиоволн. Введен специальный параграф о многолучевости как факторе, осложняющем условия распространения. Расширено содержание главы о замираниях. Наконец, изменено на- )вание и содержание пятой главы, в которой теперь рассматриваются особенности распространения радиоволн различных диапазонов (а не только ионосферных волн, как раньше). Это позволило освещать вопросы распространения с точки зрения классификации как по способам распространения, так и по диапазонному признаку.  [c.6]

Д. в. обусловливает мн. природные явления и широко используется в технике. Напр., все разновидности радуг объясняются спектр, расщеплением (из-за дисперсии света) и дифракцией солн, лучей в дождевых каплях, Д. в. в ионосферной плазме определяет частоту радиосигналов, отражающихся в данном слое ионосферы (см. Распространение радиоволн). На Д. в. основаны принципы действия мн, радиотехн., оптич. и др. устройств рефрактометров, антенн с частотным сканированием диаграмм направленности пт. д. См. также Дисперсия звука. ф Уизем Дж., Линейные и нелинейные волны, пер. с англ., М., 1977 Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд.. М., 1973.  [c.166]

Результаты ионосферных измерений, теория распространения коротких волн, систематическая обработка экспериментальных данных послужили, начиная с 1936 г., для публикации в бюллетене ЦНИИС НКСвязи рекомендаций о применении радиоволн в разные часы суток в предстоя-ш,ем месяце. Долгосрочные радиопрогнозы начали составляться в СССР с 1938 г. Работы этого рода были организованы и проводились К. М. Ко-сиковым.  [c.324]

Представляют интерес задачи Д. ). на телах, покрытых радиопоглощающим материалом, на космич. — аппаратах, входящих в атмосферу Земли со сверх- 3 звуковой скоростью и окружённых неоднородной пла- змой, на естеств, и искусств, неоднородностях иониза- ции в атмосфере и ионосфере задачи распространения (линейного и нелипейного) радиоволн в разл. неоднородных средах, в частности в естеств. волноводных каналах (прежде всего, ионосферных), и, наконец, задачи диагностики разных сред и объектов с помощью радиоволн.  [c.671]

Поглощение приводит к ослаблению радиоволн. При распространении земной волны такое ослабление практически отсутствует для сверхдлинных волн и растёт с увеличением частоты волны. В тропосфере П. р. проявляется на частотах выше 10 ГГц. При этом осн. поглощение санти- и миллиметровых волн вызывают кислород (резонансные полосы поглощения вблизи частот 60 и 120 ГГц) и водяной нар (полосы поглощения вблизи 22 и 183 ГГц). П. р. в околоземной плазме пренебрежимо мало на частотах выше 100 МГц. Для коротких и средних радиоволн (КВ и СВ) осн. поглощение происходит в D слое ионосферы, Наиб, сильно поглощение КВ проявляется в высоких широтах во время гео-физ. возмущений. Поглощение сверхдлинных радиоволн (СДВ) зависит от состояния нижней ионосферы при сравнительно слабых ионосферных возмущениях П. р. растёт с ростом возмущений, а при более интенсивных возмущениях оно может уменьшаться (см. Сверхдлинные еолны). Особо следует отметить нерезонансное поглощение мощных радиоволн при распространении в ионосферной плазме, когда возможно как увеличение, так и уменьшение П. р. с ростом мощности радиоволн.  [c.660]

РАС11РОСТРАНЁНИЕ РАДИОВОЛН в высоких широтах — ионосферная радиосвязь в диапазоне радиоволн 3—30 МГц, к-рую отличают отсутствие стабильности и низкое качество, что обусловлено спецификой среды распространения — сложной неоднородной структурой полярной ионосферы, формируемой процессами взаимодействия ионосферы, магнитосферы, Земли п возмущений плазмы в межпланетном пространстве (см. также Солнечный ветер). На низких широтах силовые линии магн. поля проходят горизонтально над магн, экватором, оставаясь глубоко внутри магнитосферы. В высоких широтах силовые линии близки к вертикальным и уходят далеко от Земли в область внеш. магнитосферы или межпланетного пространства. Т. к. заряж. частицы могут легко двигаться вдоль силовых линий, а поперёк с трудом, то ионосфера низких и средних широт защищена от возмущений в солнечном ветре, в то время как полярная ионосфера реагирует на них. Т. о,, в полярной ионосфере присутствуют два агента ионизации первый, как и на ср. широтах,— УФ-излучение Солнца и второй — корпускулярные потоки. При этом второй агент часто оказывается преобладающим, напр. в условиях затенённой ионосферы и в период геомагн. возмущений (суббурь).  [c.261]


Механизм Р. р. связан с явлениями отражения, дифракции, рефракции, поглощения и рассеяния радиоволн и различен для разных диапазонов длин волн X. Сверхдлинные волны (СДВ X > 10 ООО. ч) сравнительно слабо поглощаются земной корой. На их распространение над Землей сильно влияет ионосфера, нижние слои к-рой вместе с земной поверхностью образуют сферич. волновод, внутри к-рого распространяются СДВ (многократное отражение от ионосферы и земной поверхности). Длинные волны (ДВ X = 10 000—1000 м) сильно поглощаются земной корой. Они хорошо огибают Землю как за счет дифракции вокруг Земли (поверхностные или земные волны), так и за счет волновода земная поверхность — ионосфера (пространственные, или ионосферные волны). Средние волны (СВ Я, = 1000—100 м) сильно поглощаются нижней областью D ионосферы днем, когда область D сз ществует, они распространяются только за счет дифракции вокруг Земли (земные волны) ночью же, когда область D исчезает, дальность их распространения резко возрастает за счет отражения от верхних слоев ионосферы (ионосферные волны). На распространение СВ сильно влияют элоЕ трич. неоднородности почвы и неровности земной поверхности. Короткие волны (КВ Я == 100—10 м) за счет дифракции вокруг Земли распространяются на сравнительно небольшие расстояния. Однако за счет отражения от ионосферы оии могут распространяться до антипода (противоположная точка земного пшра).  [c.336]

Для эффективного распространения ионосферной волны на заданное расстояние необходимо, чтобы ее частота была меньше критической частоты, при которой радиоволна не отражается от ионосферы (максимальная применяемая частота), и. больше частоты, на которой потери за счет поглощения в ионосфере на данной линии радиосвязи являются допустимыми (минимальная применяемая частота) Так как ионизирующее действие Солнца на ионосферу меняется в течение суток, сезона, одиннадцатилетнего цикла солнечной активности и других факторов, то непрерывно меняются максимальная и минимальная применяемые частоты. Следовательно, для эффективной работы линии радиосвязи необходимо использовать широкий диапазон частот.  [c.156]

Радиоволнам свойственны явления отражения преломления (рефракции) й огибания препятствий (дифракции), имеющих рммеры, сравнимые с длиной волны или меньше ее. Радиоволны при распространении рассеиваются (дисперсия) иа неоднородностях среды. Рассеивание является формой отражения и пре> ломления волны при про-хождении неоднородностей с неплоской границей. Рассеивание, иногда используют при связях на небольшие и средние расстояния в диапазона.х КВ и УКВ. Для радиосвязи на КВ используют в основном два вида распространения — земной (или поверхностной) и пространственной (или ионосферной) волнами. При определенных состояниях атмосферы для связи на высокочастотных любительских диапазонах можно использовать тропосферное прохох дение радиоволн.  [c.212]

Любая радиосвязь ва КВ, за исключением местных связей в пределах несколь ких десятков километров, >существляется за счет ионосферных (или пространственных) радиоволн. Пространственной называют волну, излучаемую под углом к плоскости Земли. Такая волна при отсутствии отражения от. ионосферы.покинула бы Землю и ушла в космическое пространство. Падая на ионизированные слои атмосферы, волна изменяет направление своего распространения и при определенных условиях врзвращается обратно к Земле. Благодаря этому возможна радиосвязь. на КВ на любые расстояния в пределах Земли.  [c.213]


Смотреть страницы где упоминается термин Ионосферное распространение радиоволн : [c.310]    [c.704]    [c.43]    [c.510]    [c.428]    [c.96]    [c.352]    [c.426]    [c.43]   
Смотреть главы в:

Справочник радиолюбителя-коротковолновика  -> Ионосферное распространение радиоволн



ПОИСК



Радиоволны

Распространение радиоволн



© 2025 Mash-xxl.info Реклама на сайте