Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поглощение звука в релаксирующих средах

Заметим, что в соответствии с формулами (УП.8)—(VII. 15) коэффициенты отражения и прохождения практически не зависят от частоты, если не считать возможной зависимости из-за дисперсии скорости звука в релаксирующих средах. Однако эта дисперсия обычно столь мала, что она не может заметно повлиять на разность волновых сопротивлений, определяющую величину коэффициента отражения на границе с данной средой. Поэтому полученные результаты справедливы также и для немонохроматических волн со сложным спектром, в частности для ультразвуковых импульсов. В силу сказанного, относительный спектральный состав, т. е. форма огибающей импульса, не должен изменяться при отражении и прохождении изменяются лишь абсолютные значения амплитуд гармоник и высота импульса в соответствии с величиной коэффициентов отражения и прохождения. Коэффициент отражения от границы раздела сред при нормальном падении волны, очевидно, не должен зависеть и от поглощения ультразвука в этих средах.  [c.147]


Исключение составят только следующие два параграфа, в которых будут рассмотрены явления поглощения и дисперсии звука в релаксирующей среде (т. е. будет учтено влияние неравновесных процессов на газодинамический — распространение звуковых волн).  [c.428]

Покажем, как можно вывести закон дисперсии и коэффициент поглощения звука в релаксирующей среде. При этом для простоты и наглядности все вычисления проделаем на конкретном примере газа с неравновесными колебаниями, для которого в 1 была сформулирована полная система уравнений газодинамики (8.1), (8.2), (8.4), (8.6), (8.7), (8.8). Запишем все переменные величины в звуковой волне давление, плотность и т. д. в виде / = /о + /, где /о — среднее значение, соответствующее невозмущенному газу, а / — переменная часть, которую будем считать малой величиной (скорость и = щ и = м, так как невозмущенный газ покоится Ио = 0)- Фактическую энергию колебаний также можно представить в форме 8к = еко + к. где 8ко — колебательная энергия в невозмущенном газе, которая, естественно, равновесна. Переменную часть равновесной колебательной энергии запишем в виде ей Т) = с Г, где Ск — колебательная теплоемкость, соответствующая средней температуре То (если при температуре Го колебания классические, Сц = А, в противном случае выражается квантовой формулой (см. 2 гл. III)).  [c.433]

Если Гр 1, то нелинейные эффекты несущественно сказываются на поглощении звука в релаксирующей среде, независимо от ее частоты. Если же Гр 1, то искажения формы волны приводят к образованию пилообразной волны, профиль одного периода которой изображен на  [c.44]

Таким образом, релаксирующие среды, вообще говоря, не являются средами, где коэффициент поглощения квадратично зависит от частоты. Высокочастотные гармоники, появляющиеся в процессе нелинейного искажения формы профиля волны, могут попадать в область ot 1, где релаксационная часть поглощения не зависит от частоты. Уже одно это может привести к некоторому отличию процессов пскажения и поглощения волн конечной амплитуды. Другим существенным обстоятельством является то, что в релаксирующих средах имеет место дисперсия скорости звука. то приводит к тому, что между появляющейся в области дисперсии гармоникой и порождающей ее волной могут в процессе распространения изменяться фазовые соотношения или, как иногда говорят, не выполняться условия синхронизма.  [c.131]

С явлением диссипации мы познакомимся более подробно в следующем параграфе при рассмотрении поглощения звука в релаксирующей среде. Поглощение звуковых волн представляет собой характерный пример диссипации механической энергии. Примером неполного использования энергии вследствие необратимости может служить рассмотренный выше идеализированный случай истечения газа в пустоту с полностью замороженными колебаниями. В кинетическую энергию разлета идет только обратимая часть внутренней энергии энергия поступательных и вращательных степеней свободы, а энергия колебаний так и остается в молекулах, благодаря чему скорость истечения оказывается меньшей. Подобные эффекты необратимости при наличии неравновесных процессов могут привести к дополнительным потерям в высокоскоростных турбинах при высоких температурах, в соплах ракетных двигателей и т. д. На использовании эффекта повышения энтропии с течением времени основан независимый метод измерения времени колебательной релаксации т, примененный Кантровицем [1] для исследования релаксации в СОг.  [c.427]


Таким образом, для сред с тепловой нелинейностью процесс выхода на стационарное изменение показателя преломления протекает в три зтапа после момента поглощения излучения. Оценим характерные времена этих этапов. Длительность первого из них, представляющего релаксацию возбуждения в тепло, мы указывали с. Второй зтап происходит со скоростью звука, равной по порядку величины у 10 см/с. Константа даффузии тепла, отвечающая за третий этап, ) 10" см /с. Для типичных периодов пропускающих решеток, записываемых в средах с тепловой нелинейностью А 10 см, получаем, что длительность этапа установления давления Гр 10 с, а время выравнивания температуры Го 10" с. Полученные времена существенно различаются, и вначале всегда устанавливается давление, а уже затем температура. Для случая отражательной решетки Л 10" см. Тогда Гр 10" с, а То 10 с. Видно, что времена сближаются, но по-прежнему давление устанавливается раньше. Отношение интервалов времени релаксации температуры для пропускающей и отражательной решеток составляет Ю . Поскольку решетки температуры релаксируют зкспоненциально, то и их стационарные амплитуды соотносятся как времена релаксации. Поэтому стационарные пропускающие решетки оказьшаются в 10 раз сильнее стационарных отражательных решеток при одновременной записи одними и теми же пучками излучения.  [c.57]


Смотреть страницы где упоминается термин Поглощение звука в релаксирующих средах : [c.123]    [c.43]    [c.52]    [c.63]    [c.340]    [c.138]   
Смотреть главы в:

Мощные ультразвуковые поля  -> Поглощение звука в релаксирующих средах



ПОИСК



Поглощение

Поглощение звука



© 2025 Mash-xxl.info Реклама на сайте