Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Построения тетраэдральных элементов

Построения тетраэдральных элементов  [c.308]

Т. е. представляется в виде произведения функций от соответствующих объемных координат. Введение соответствующих нижних индексов аналогично случаю треугольных координат и иллюстрируется для тетраэдрального элемента, построенного на базе квадра-  [c.254]

Изложенная подробно в [10.6] процедура построения матрицы жесткости для рассматриваемого элемента существенно отличается от приведенной выше. В указанной работе приводятся в виде таблиц матрицы жесткости в обобщенных координатах и матрицы преобразования обобщенных координат в узловые. Знание явных выражений для основной матрицы жесткости, как показано в разд. 8.2, где строится матрица жесткости, соответствующая обобщенным смещениям а , позволяет построить целое семейство матриц жесткости тетраэдральных элементов для полей перемещений в виде полных кубических полиномов обобщенных параметров.  [c.314]


В предыдущих трех главах дано довольно подробное описание, как могут быть поставлены и решены задачи линейной тео -рии упругости с помощью конечных элементов простейших форм. Хотя подробные выкладки проведены только для функций формы, относящихся к треугольным и тетраэдральным элементам, очевидно, что точно так же можно было бы рассмотреть и другие элементы. Фактически если выбран тип элемента и определены соответствующие функции формы, то все дальнейшие действия просты, порядок их ясен и они могут быть выполнены вычислителем, не знакомым с физическим содержанием задачи. Из последующего станет ясно, что вполне возможно составить программу, позволяющую решать на машине широкие классы задач только при задании определенных функций формы. Однако выбор функций представляет собой вопрос, требующий разумного решения, в принятии которого роль человека пока является определяющей. В настоящей главе излагаются правила построения некоторых семейств одномерных, двумерных и трехмерных элементов.  [c.117]

В начале главы изучаются общие условия, которым должны удовлетворять выбираемые представления функций поведения. Далее обсуждаются вопросы задания указанных представлений в виде полиномиальных рядов. Затем описывается регулярный подход к построению представлений в терминах физических степеней свободы, т. е. в виде функций формы. Для треугольных (двумерных) элементов этот подход реализуется посредством использования треугольных координат, а для тетраэдра (трехмерный случай) — тетраэдральных координат. Далее описываются концепции, лежащие в основе интерполяции семейств функций для двух- и трехмерных четырехугольных и шестигранных элементов.  [c.227]

Простой способ построения элемента Т48 основан на разложении величин в ряд по тетраэдральным координатам в виде  [c.313]

Учитывая сказанное, ограничимся ниже построением тетраэдральных элементов лишь с линейным полем перемещений и элементов Т48. Первые являются базовыми для всего семейства тетраэдральных элементов элементы более высокого порядка (с квадратичными и кубичными полями перемещений) из этого класса легко формулируются как обобщение этих элементов. Введенные в разд. 8.4 тетраэдральные координаты позволяют построить функции формы для представления любого порядка и приводят к алгебраичес-  [c.311]

До сих пор аппроксимация для всей области в методе конечных элементов строилась в предположении ее некоторой гладкости (или по крайней мере непрерывности) на стыках между соседними элементами. Для дифференциального уравнения порядка 2к требовалась сшивка в для методов Ритца и Галеркина или сшивка в для метода наименьших квадратов. Если для тетраэдральных элементов сшивка в О достигается применением полиномов девятой степени, то нетрудно себе представить, каким сложным делом будет при к > 1 построение элементов с требуемой степенью гладкости сшивки, т. е. построение согласованных элементов. Поэтому с вычислительной точки зрения желательно научиться использовать элементы с меньшей степенью гладкости на стыках, чем это формально требуется, т. е. несогласованные элементы.  [c.180]



Смотреть страницы где упоминается термин Построения тетраэдральных элементов : [c.309]    [c.318]   
Смотреть главы в:

Метод конечных элементов Основы  -> Построения тетраэдральных элементов



ПОИСК



Элемент тетраэдральный



© 2025 Mash-xxl.info Реклама на сайте