Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод конечных разностей в задачах устойчивости и колебаний

МЕТОД КОНЕЧНЫХ РАЗНОСТЕЙ В ЗАДАЧАХ УСТОЙЧИВОСТИ И КОЛЕБАНИЙ  [c.90]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


В практике получили большое распространение деформируемые конструкции с физико-механическими особенностями в виде разрывов однородности. Примером таких конструкций могут служить пластинки и оболочки с вырезами произвольной формы. Исследованию их напряженно-деформированного состояния посвящено значительное число работ, опубликованных прежде всего известными советскими учеными Г. Н. Савиным, А. Н. Гузем и их учениками, Э. И. Григолюком и Л. А. Фильштинским. Приводимые в этих работах решения чаще всего основывались на использовании комплексных потенциалов Колосова—Мусхелишвили, комплексных переменных, а в последнее время — на численных методах типа метода конечных разностей и метода конечных элементов. Значительно меньшее число работ было опубликовано по решениям задач об устойчивости и колебаниям пластинок и оболочек с вырезами или устойчивости и колебаниям многосвязных систем. Изложению некоторых из них посвящена книга редактора перевода Устойчивость и колебания пластинок и оболочек с отверстиями . — М. Машиностроение, 1981, 191 с. Ограниченное число публикаций связано с целым рядом математических трудностей, которые не всегда удается преодолеть даже численными методами.  [c.5]

Применим для решения задачи об определении собственных значений системы обыкновенных дифференциальных уравнений (2.121) и (2.122) с граничными условиями (2.135) методко-нечных разностей. Этот метод является одним из наиболее эффективных методов решения задач устойчивости и колебаний оболочек вращения, особенно с точки зрения использования средних ЭВМ типа М-220, БЭСМ-4 и др. Несмотря на то, что метод конечных разностей является одним из самых распространенных методов решения задач математической физики, при решении задач устойчивости и колебаний этот метод нашел широкое применение только в последнее десятилетие [31, 33, 35, 45, 46,50,53,59,66,81—89].  [c.90]


Смотреть страницы где упоминается термин Метод конечных разностей в задачах устойчивости и колебаний : [c.255]    [c.188]   
Смотреть главы в:

Статика и динамика тонкостенных оболочечных конструкций  -> Метод конечных разностей в задачах устойчивости и колебаний



ПОИСК



473 колебания—,37, 445 — 447 задачи

Задача и метод

Колебание устойчивое

Конечные разности

Метод конечных разностей

Методы колебаний

Разность фаз



© 2025 Mash-xxl.info Реклама на сайте