Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Работа, развиваемая при движении крыльев

При этом было допущено, что все точки крыла принимают одинаковое участие в работе, т. е. что все они обладают скоростью 11 т но если принять во внимание действительное движение крыльев, то результат получится еще менее благоприятный и работа аиста выразится более, нежели 75 kgm, т. е. более HP, тогда как в действительности, даже при неблагоприятных условиях полета, аист развивает работу едва в Ую HP.  [c.37]

Этот сравнительно молодой раздел гидродинамики сейчас интенсивно развивается, и количество работ, ему посвященных, растет из года в год. Внимание исследователей здесь привлекает, с одной стороны, трудность и новизна проблем и, с другой, — то, что многие из этих проблем возникают нз запросов техники сегодняшнего дня —движение судов на подводных крыльях, поиски нового типа тяговой силы, быстро меняющиеся процессы (в том числе взрывы в атмосфере и воде), изучение и использование природных явлений и т. д. и т. п.  [c.271]


Мы должны стремиться к тому чтобы, по возможности, избегать ударов и вихревых движений при поступательном полете плоская форма крыльев совершенно непригодна для этой цели. Из этого вообще следует, что с воздухом, который должен с выгодой давать опору при полете, вообще обращаются слишком грубо. Для того чтобы воздух мог поднять нас при развитии незначительной механической работы, он не должен быть развиваем, изгибаем и ломаем плоскими поверхностями, но он должен быть, по возможности, плавно отклоняем от своего положения, и это движение должно быть произведено при помощи правильно изогнутых поверхностей.  [c.92]

Теперь оказывается, что при быстром поступательном движении вперед и медленном опускании крыльев, т. е. при сравнительно скором полете, развивается значительно меньшая работа.  [c.124]

В настоящее время активно развиваются методы решения задач генерации поверхностных гравитационных волн поступательно движущимся телом, позволяющие учитывать нелинейность граничных условий на свободной поверхности и контуре. Полученные результаты в значительной мере отражены в обзорных работах [1-3]. Наибольшие успехи достигнуты при обтекании особенностей [4—7]. Рассмотрение цилиндрических форм при нелинейных граничных условиях было начато в [8]. Среди последних работ этой области отметим исследования [9, 10]. Применению так называемой двойной модели [11], связанной с введением зеркально отображенного контура, посвящены работы [12-14]. Обтекание тонкого профиля по схеме возмущений [15] рассматривалось в [16, 17]. Границы применимости теории возмущений подробно исследованы в [4]. Тонкий профиль в полной нелинейной постановке исследовался в [18]. Методы конечных и граничных элементов для решения задачи о движении подводного крыла применялись в [19, 20]. В [21, 22] предложен метод для вычисления полностью нелинейного течения около подводного крылового профиля, в котором решение опирается на панельный метод высокого порядка.  [c.165]

Явление кавитации наблюдается в трубопроводах, находящихся под пониженным давлением, оно наблюдается при работе быстроходных центробежных насосов, рабочих колес гидротурбин, лопастей винтов, у крыльев судов на подводных крыльях, и т. д. Кавитация оказывает вредное действие на работу машин и трубопроводов увеличиваются потери энергии на трение, понижается КПД, развиваются опасные вибрации и происходит так называемая кавитационная коррозия металлов, т. е. разрушение металла вследствие развивающихся многочисленных гидравлических ударов. Вначале с поверхности металла, подвергаемого кавитационной коррозии, выкрашиваются отдельные кусочки, а затем процесс быстро распространяется в глубь металла, охватывая своим разрушающим действием все большие участки. В результате металл становится рыхлым, губчатым и в конце концов совсем разрушается. Часто к кавитационной коррозии добавляется хн.М че-ская коррозия, и процесс разрушения металла еще больше ускоряется. Во избежание кавитационных явлений или с целью у мень-шения их отрицательного действия приходится ограничивать частоту вращения рабочих колес гидравлических машин, вингов судов, уменьшать скорость движения судов на подводных крыльях, изготовлять колеса, винты, крылья из антикоррозионных особопрочных материалов и придавать им специальные, порой весьма сложные, формы.  [c.47]


Теория решеток возникла из работ Н. Е. Жуковского и С. А. Чаплыгина, в которых исследовалось действие турбин, воздушных винтов и разрезных крыльев. Сначала рассматривались и излагались, главным образом в работах по аэродинамике, некоторые простые задачи плоского движения невязкой несжимаемой жидкости, обобш ающие такие же задачи теории крыла. Одновременно и независимо от теории аэродинамических решеток развивалась гидравлическая (одномерная) теория турбин, начало которой было положено еще Л. Эйлером в 1754 г., причем возникали и разрешались отдельные задачи теории решеток, а также вихревых течений, близкие к задачам теории винта. В сороковых годах в связи с появлением, исследованиями и разработкой авиационных газотурбинных двигателей началось интенсивное развитие теории решеток как базы современной теории компрессоров и турбин. Основные результаты были получены школой Н. Е. Жуковского и С. А. Чаплыгина и связаны с Московским университетом, Центральным аэро-гидродинамическим институтом и Центральным институтом авиационного моторостроения (здесь следует еще упомянуть работы в области гидравлических и паровых турбин Ленинградского политехнического и Московского энергетического институтов, а также Центрального котлотурбинного института). На этом основном этапе развития теории гидродинамической решеткой стали называть любую находящуюся в потоке жидкости или газа кольцевую систему неподвижных или вращающихся лопастей турбомашины (гидравлической, паровой или газовой турбины, вентилятора, лопаточного компрессора или насоса). Определенная таким образом пространственная решетка включает, как различные частные случаи, одиночное крыло в безграничной жидкости, вблизи поверхности воды или земли биплан и полиплан гребной и воздушный винт плоскую и прямую решетки плоские, осесимметрдчные и пространственные трубы, каналы и сопла — фактически почти все объекты исследования прикладной гидрогазодинамики. С теоретической точки зрения задачи обтекания решеток представляют собой нетривиальное  [c.103]


Смотреть главы в:

Полёт птиц как основа искусства летать  -> Работа, развиваемая при движении крыльев



ПОИСК



Крылов

Крылова Н. С. работы



© 2025 Mash-xxl.info Реклама на сайте