Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегральные уравнения граничных задач. Теоремы существования н единственности

Интегральные уравнения граничных задач. Теоремы существования и единственности. Рассмотрим первую и вторую основные граничные задачи с постановкой этих задач мы познакомились в 2 гл. II. Правда, здесь речь идет уже о построении решения системы уравнений (8.4). Разыскивая решение первой задачи в виде потенциала двойного слоя первого рода, а решение второй — в виде потенциала простого слоя первого рода, получим на основании  [c.265]


Обоснование схемы. Краевые задачи, предусмотренные п. (1) и (2), представляют собой обобщение задач Я и р, сформулированных в 20.12 различие заключается лишь в том, что в рассматриваемом случае они должны-решаться для оболочки с изломом % и что на А. в каждой задаче должны выполняться два условия сопряжения. Примем, что теоремы существования задач Р п р здесь формулируются так же, как и в 20.12, 20.13. Тогда можно утверждать, что обсуждаемая схема соответствует случаю, когда тангенциальное закрепление — жесткое, т. е. когда изгибания срединной поверхности невозможны, а следовательно, задача Р при любых, достаточно гладких правых частях уравнений и граничных условий имеет решения, зависящие от г констант с/ (s), а задача р имеет решение (единственное) тогда и только тогда, когда выполнены г интегральных требований. В рамках этогО предположения обоснование схемы построения приближения (s) превращается, в сущности, в повторение рассуждений 20.12. Опуская их, оста-. новимся только на следующем обстоятельстве.  [c.319]

Название метод граничных элементов , впрямую привязанное к дискретизации границы для проведения вычислений, вряд ли могло появиться до тех пор, пока численное решение сложных задач на ЭВМ не стало общедоступным — интегральные уравнения родились и долгое время оставались не средством численного решения задач, а мощным орудием теоретического исследования проблем математической физики. С их помощью доказывались теоремы существования и единственности решения краевых задач в различных классах функций, выяснялся характер сингулярностей в особых точках, изучались спектры операторов, соотношения между исходными и сопряженными уравнениями и т. д. Эта большая работа оставила заметный след в развитии математики. Достаточно назвать имена Э. Бетти, В. Вольтерры, Д. Гильберта, Ж- Лиувилля, Дж. Лауричеллы, А. М. Ляпунова, К. Неймана, А. Пуанкаре, С. Сомильяны, Э. Фредгольма, чтобы почувствовать сколь значительны результаты, полученные в теории интегральных уравнений.  [c.266]


Смотреть страницы где упоминается термин Интегральные уравнения граничных задач. Теоремы существования н единственности : [c.10]   
Смотреть главы в:

Методы потенциала в теории упругости  -> Интегральные уравнения граничных задач. Теоремы существования н единственности



ПОИСК



Граничные уравнения

Единственность

Интегральные уравнения граничных задач

Существование

Существование и единственность

Теорема единственности

Теорема существования

Теорема существования для задачи

Теорема существования и единственности

Уравнение задачи (А) интегрально

Уравнение задачи (А) интегрально Si) интегральное

Уравнения интегральные



© 2025 Mash-xxl.info Реклама на сайте