Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Катодная защита от коррозионной усталости

Предложенная адсорбционно-электрохимическая теория коррозионной усталости дает истолкование ряду явлений, которые не могут быть объяснены с точки зрения существующей электрохимической теории коррозионной усталости. Согласно предложенной теории становится ясной невозможность восстановления усталостной прочности стали в коррозионных средах до ее значения в воздухе за счет катодной защиты от внешнего источника тока. Катодная поляризация, как это было показано выше (см. фиг. 21), сначала снижает отрицательное влияние анодных процессов, но, прекратив их полностью, все же не восстанавливает усталостной прочности стали до ее значения в воздухе, что объясняется проявлением адсорбционной и водородной усталости. Дальнейшее усиление катодной поляризации увеличивает наводороживание стали, и ее выносливость начинает резко снижаться под влиянием водородной усталости.  [c.175]


Электрохимические методы защиты стали, например- при помощи цинковых протекторов, или покрытия стали цинком, а также катодная защита от внешнего источника тока дают хорошие результаты при отсутствии напряжений. При действии же статических или циклических напряжений катодная защита за счет внешнего источника тока Может применяться только после установления оптимального значения плотности тока, так как повышение плотности тока выше определенного предела (как это видно из диаграммы на фиг. 21, точка 5) может вызвать водородную усталость стали. Поляризация при плотности катодного тока, меньшей оптимальной, не подавив полностью работы коррозионных пар, также не дает желаемого эффекта защиты. Характерно, что значение оптимальной плотности тока при защите стали, находящейся под напряжением, должно быть в десятки и даже в сотни раз выше, чем при защите ненапряженного металла. Однако даже в случае правильного подбора плотности защитного тока, как это говорилось выше (см. VII—2), катодная защита так же, как и защита протекторами или анодными покрытиями, не может полностью восстановить усталостной прочности стали в коррозионных средах до ее значений в воздухе.  [c.179]

В нейтральных коррозионных средах катодная защита внепшим током может полностью защитить конструкционную сталь от коррозионной усталости. Такая степень защиты наступает лишь в том случае, если катодная поляризация полностью предотвращает коррозионный процесс на металле, подвергнутом переменным напряжениям.  [c.98]

Изучение электрохимического механизма коррозионной усталости позволило обосновать эффективность поверхностного упрочнения и протекторной и катодной защиты от усиления усталостного процесса действием коррозионной среды. Для углеродистой стали с средним содержанием углерода протекторная защита при помощи цинковых покрытий позволила увеличить предел усталости на 100% и более [17].  [c.666]

Катодные покрытия — хром, никель, медь,— практически не защищают железо и сталь от коррозионной усталости. Наоборот, анодные покрытия — цинк, кадмий,— так же как и катодная поляризация, могут почти полностью защитить образец от добавочного действия коррозионной среды. Некоторым подтверждением сказанному могут служить приводимые на рис. 134 кривые, показывающие характер влияния на коррозионную усталость различных средств защиты [11].  [c.263]


Как показано выше, характер изменения электрохимических свойств сталей, циклически деформируемых в коррозионной среде, взаимосвязан с определенными этапами развития коррозионно-усталостных повреждений. Данные об изменении электрохимических свойств при усталости позволяют интерпретировать развитие разрушений в зависимости от амплитуды напряжении и количества циклов нагружения. Они позволяют также описать процесс разрушения с количественной стороны, так как на их основе можно установить, в какой области и после какого числа циклов происходит развитие сдвигообразований, микротрещин, магистральной трещины и как при этом повышается электрохимическая активность металлической поверхности, Данные об электрохимических свойствах металлов в условиях коррозионно-усталостного разрушения позволяют обоснованно выбрать для них параметры катодной защиты.  [c.177]

Шлюзы на Панамском канале защищены катодно извне наложенным током при этом первоначальные расходы по установлению катодной защиты составили менее 0,5% от стоимости замены шлюзов. Одно из важных преимуществ применения в этом случае катодной защиты — то, что отпадает необходимость в периодических длительных перерывах в работе шлюзов для ремонта повреждений, вызванных коррозией. Аналогично этому катодно защищенный корабль может проработать в течение более длительного периода между ремонтами в сухом доке, что приносит ежегодную экономию в тысячи долларов. Другие экономические преимущества катодной защиты связаны с тем, что при этом предотвращаются такие виды разрушения различных конструкционных металлов, как коррозионное растрескивание, коррозионная усталость и питтинг.  [c.184]

Эффективность способа катодной защиты и зависимость от плотности тока показана на фиг. 91. С ростом плотности тока предел коррозионной- усталости приближается к обычному пределу усталости.  [c.110]

Водородная усталость. Как указано выше, выделение водорода в зоне коррозионно-механического разрушения металлов возможно вследствие катодных процессов при электрохимической коррозии, а также гидролиза коррозионной среды в вершине развивающейся трещины или других дефектах. Участие в разрушении металлов может принимать также находящийся в них металлургический водород. В последнее время водород все чаще используют как технологическую среду. Обширны перспективы применения водорода в качестве топлива в энергетике и транспортной технике, что продиктовано, главным образом, требованиями защиты окружаю-щй среды от загрязнения. Как известно, водород в процессе горения вредных примесей не выделяет и поэтому с экологической точки зрения является идеальным топливом.  [c.18]

Хотя теоретические основы электрохимической защиты разработаны довольно хорошо и она успешно выдержала проверку временем, в последние годы в связи с применением высокопрочных сталей, обладающих повышенной чувствительностью к водородному охрупчиванию, возникла необходимость пересмотра некоторых параметров катодной защиты с целью исключения наводороживания металлов. Представляет также интерес использование анодной защиты от коррозионной усталости пассивирующихся металлов.  [c.4]

Возможность успеишой защиты от коррозионной усталости путем применения катодной поляризации от внешнего источника постоянного тока, а также установленная взаимосвязь между электрохимическими характеристиками металла в условиях коррозионной усталости, величиной переменного напряжения и плотностью защитного токи являются еще одним доказательством правильности электрохимического механизма коррозионной усталости.  [c.99]

Для того чтобы коррозионный процесс оказывал влияние на усталостную прочность, скорость коррозии должна превышать некое минимальное значение. Эти величины удобно определять путем анодной поляризации опытных образцов в деаэрированном 3 % растворе Na l. При этом скорость коррозии рассчитывают по закону Фарадея из плотностей тока и определяют критические значения, ниже которых коррозия уже не влияет на усталостную прочность. (Эти измеренные плотности тока не зависят от общей площади поверхности анода.) Значения минимальных скоростей коррозии при 30 цикл/с для некоторых металлов и сплавов приведены в табл. 7.5. Можно ожидать, что эти значения будут увеличиваться с возрастанием частоты циклов. Для сталей критические скорости коррозии не зависят от содержания углерода, от приложенного напряжения, если оно ниже предела усталости, и от термообработки. Среднее значение 0,58 г/(м сут) оказалось ниже общей скорости коррозии стали в аэрированной воде и 3 % Na l, т. е. 1—10 г/(м -сут). Но при pH = 12 скорость общей коррозии падает ниже критического значения и предел усталости вновь достигает значения, наблюдаемого на воздухе [721. Существование критической скорости коррозии в 3 % Na l объясняет тот факт, что для катодной защиты стали от коррозионной усталости требуется поляризация до —0,49 В, тогда как для защиты от коррозии она составляет —0,53 В.  [c.160]


Известно, что при катодной поляризации в морской воде на поверхности металла осаждается гидрооксидно-солевой осадок, чего не наблюдается при испытании в водных растворах Na I, в которых отсутствуют ионы кальция и магния. С увеличением электросопротивления такого осадка снижается защитная плотность тока, что можно эффективно использовать при выборе режимов электрохимической защиты сталей от коррозионной усталости.  [c.193]

Л.А.Гликман и др. [235] изучали влияние катодной поляризации на коррозионную усталость образцов диаметром 10 мм из нормализованной стали 25 в естественной морской воде при чистом изгибе с частотой 50 Гц. Они показали, что при оптимальном потенциале поляризации -1150 мВ условный предел коррозионной выносливости стали при N = 2 10 цикл увеличивается с 70 до 190 МПа и приближается к значению предела выносливости в воздухе (200 МПа). Плотность тока, необходимая для защиты стали от разрушения в морской воде, на 1—4 порядка ниже, чем в 3 %-ном растворе Na I, и составляет 0,01—0,2 А/м . Низкая защитная плотность тока в естественной морской воде связана с образованием плотного осадка.  [c.194]

Электрохимическая защита. Защита наложением катодного тока от внешнего источника или с помощью протекторов чрезвычайно эффективно при коррозионной усталости. При этом коррозионно-усталостная прочность металлов может не только полностью восстанавливаться до усталостной прочности в воздухе, но и стать несколько выше, так как будет ликвидировано также влияние атмосферной коррозии на усталостную прочность [37 ]. Такая степень защиты наблюдается как для материалов, не чувствительных к водородной усталости, так и при определенных потенциалах для остальных сплавов. При сопутствующих электрохимической защите процессах, снижающих уста-лостую прочность, возможна как полная защита, так и частичек  [c.84]

Процесс коррозионной усталости в электролитах является механо-электрохимическим. Поэтому можно использовать электрохимическую защиту. Так, при наложении катодной поляризации при испытании низкоуглеродистой стали на коррозионную усталость в 3 /о-ной Na i наблюдалась полная защита стали от общей коррозии и повышение предела усталости до значений, близких к пределу усталости на воздухе [7, с. 263]. Использование цинкового протектора или анодных металлических покрытий (Zn, d) позволяет также значительно повысить предел коррозионной усталости канатной проволоки в морской воде. Катодные металлические покрытия (Sn, РЬ, Си и др.) достаточно эффективны только в случае их сплошности.  [c.118]

Возможно, что циклическая водородная усталость также сопровождается адсорбционно-усталостными явлениями, особенно в средах, содержащих полярные органические кислоты, однако этот вопрос еще сов.ершенно не исследован экспериментально. Р. И. Крипякевич, Ю. И. Бабей и Г. В. Карпенко [425] провели специальные эксперименты, направленные на выяснение роли катодной и анодной поляризации стального образца в-соотношении между его коррозионной и водородной усталостью. Исследование условий перехода от разрушения образца по механизму коррозионной усталости к проявлению водородной усталости представляет как теоретический интерес (изучение процесса усталостного разрушения металла), так и большое практическое значение (определение оптимальных условий катодной защиты стали).  [c.158]

Катодная защита, которая может лредохраяить ненапряженный металл от коррозии, может в некоторых случаях, как указывает Беренс , уменьшить коррозионную усталость.  [c.591]


Смотреть страницы где упоминается термин Катодная защита от коррозионной усталости : [c.138]    [c.65]    [c.90]    [c.171]    [c.90]    [c.136]    [c.126]    [c.387]   
Коррозия и борьба с ней (1989) -- [ c.161 ]



ПОИСК



V катодная

Катодная защита

Коррозионная усталость

Усталость



© 2025 Mash-xxl.info Реклама на сайте