Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие сведения о физическом законе

Для решения поставленной задачи выберем несколько систем отсчета Во-первых, используем ортогональный лабораторный базис л , у, г. В этом базисе целесообразно записывать окончательные выражения и соответствующие операции в терминах инженерной механики пластичности, например конфигурационные тензоры деформаций г и напряжений усредненные по характерным объемам V, включающим большое количество малых участков (объемов кристалла, в которых реализуется каждый конкретный элементарный акт деформации или разрушения. Во-вторых, применим кристаллофизический базис, задаваемый тремя некомпланарными единичными векторами и, v, w, который в общем случае условимся считать косоугольным, а в практических расчетах — близким к ортогональному. В кристаллофизической системе координат такие свойства удобно выражать как тепловое расширение и упругую податливость. Справочные сведения о подобных характеристиках обычно представляют именно в кристаллофизическом базисе. В-третьих, будем широко пользоваться различными локальными базисами (которые в общем случае можно считать и неортогональными), выбирая их каждый раз так, чтобы форма записи соответствующих физических законов реализации процесса была предельно простой и понятной по содержанию. Так, если деформация осуществляется кристаллографическим сдвигом по плоскостям с нормалью п в направлении /, условимся задавать ее в базисе I, т, п, где направления I, т я п образуют тройку единичных ортогональных по отношению друг к другу векторов. Примером другой локальной системы отсчета может служить базис а, Ь, с, в котором удобно записывать условия раскрытия трещин отрыва. При этом условимся орт а ориентировать вдоль направления сдвига, инициирующего отрыв (например, по схеме Стро [2П), а вектор с — вдоль нормали к плоскости трещины. Понятно, что в этой схеме тройка единичных векторов а, Ь, с не обязательно образует ортогональный базис, а орт а может совпадать с ортом I из локальной системы сдвига. Однако базис целесообразно брать все же ортогональным.  [c.9]


Общие сведения о физическом законе  [c.51]

Важная цель изучения физики будущим учителем состоит в овладении совокупностью общих ее идей, принципов, законов, общих сведений о строении, движении, взаимодействии объектов окружающего нас материального мира. Эта совокупность и есть физическая картина мира. Во вводной главе она раскрывается с качественной стороны, что позволяет изучать далее физические теории как фрагменты единой картины.  [c.5]

Итак, закончено краткое изложение основных положений технической, термодинамики, и нам хотелось бы еще раз обратить внимание читателя на следующее обстоятельство. Как уже отмечалось во введении, термодинамика построена весьма просто опытным путем установлены два основных закона, и применение к ним обычного аппарата математического анализа позволило получить все те разнообразные выводы, которые были предложены вниманию читателя. В этой простоте — универсальность термодинамики, выделяющая ее из многих других физических теорий. Мы хотим закончить эту книгу словами А. Эйнштейна Теория производит тем большее впечатление, чем проще ее предпосылки, чем разнообразнее предметы, которые она связывает, и чем шире область ее применения. Отсюда глубокое впечатление, которое произвела па меня классическая термодинамика. Это единственная физическая теория общего содержания, относительно которой я убежден, что в рамках применимости ее основных понятий она никогда не будет опровергнута (к особому сведению принципиальных скептиков) .  [c.502]

Вводные сведения. Основные физические свойства жидкостей и газов. Основы кинематики. Общие законы и уравнения статики и динамики жидкостей и газов. Силы, действующие в жидкостях. Абсолютный и относительный покой (равновесие) жидких сред. Модель идеальной (невязкой) жидкости. Общая интегральная форма уравнений количества движения и момента количества движения. Подобие гидромеханических процессов.  [c.187]

Данная глава призвана помочь читателю войти в курс рассматриваемых проблем. Она содержит лишь основные положения теории дифракции волн на одномерно-периодических структурах и их нетривиальные следствия, т. е. те сведения о дифракционных свойствах решеток, которые можно получить еще до решения соответствующих краевых задач, привлекая лишь общие законы электродинамики. Очевидные и хорошо известные по ряду монографий и учебников результаты приводятся без вывода. Подробно излагаются только те сведения, которые сами по себе или в совокупности с результатами численного и аналитического исследований способствуют достижению основной цели данной работы — пониманию физических процессов, сопровождающих дифракцию волн на периодических структурах. Следует подчеркнуть, что часть материала данной главы довольно трудно найти в удобном виде в других книгах, в частности соотношения взаимности для обобщенных матриц рассеяния и следствия из них. В этой главе вводятся также основные обозначения, используемые в дальнейшем в книге.  [c.12]


Термодинамика занимается общими законами, имеющими место для всех сложных физических систем, и именно поэтому она не может дать никаких сведений о том, какие конкретные системы могут существовать в природе. Даже тот факт, что очень многие сложные системы состоят из одинаковых молекул, не является термодинамическим законом, поскольку бывают сложные системы, и не состоящие из молекул.  [c.125]

Эксперимент и теория. Физика — наука экспериментальная в ней для исследования объектов и явлений материального мира ставится специальный научный опыт — эксперимент, в котором целенаправленно изучают явление природы, материальный объект в строго учитываемых условиях. При проведении эксперимента обеспечивается возможность следить за изучаемым физическим объектом, воздействовать на него другими объектами, изменять условия протекания изучаемого физического процесса или явления, воссоздать или вызвать явление. Добытые с помощью эксперимента сведения представляют собой отдельные факты физической науки устанавливаются частные законы. По мере накопления экспериментальных фактов и частных законов, в процессе исторического развития физики, возникает потребность их теоретического обобщения, которое достигается с помощью некоторых новых положений — исходных принципов или общих законов, составляющих основу большой группы уже открытых частных законов, физических явлений, свойств, фактов и т. п.  [c.5]

Приведенного материала вполне достаточно, чтобы дать негативную оценку попыткам сведения постоянной Больцмана к всего лишь переводному коэффициенту от эпергетических единиц к тепловым. Да и физически это совершенно неверно. Соотношения (48) и (53) справедливы лишь при условии, что тело находится в тепловом равновесии. Если же состояние коллектива неравновесно (пучок частиц из ускорителя), то в этом случае средняя энергия частиц уже не может измеряться темпер11.турой. Возможные определения температуры отнюдь не исчерпываются этими соотношениями. Например, полость, заполненная излучением, имеет объемную плотность энергии Q, пропорциональную 7 Q = o-T. Здесь а — постоянная Стефана— Больцмана, она определяется через другие фундаментальные константы. Определение температуры по этому закону является значительно более общим. Определения же (48) и (53) справедливы лишь для вещества, для тел, состоящих из молекул и атомов. Другие возможные определения температуры будут даны ниже.  [c.78]

Заключая начальные сведения, отметим, что все задачи курса содержат три общие части статическую, состоящую в определении системы внешних и внутрзенних усилий геометрическую, заключающуюся в анализе схемы деформации элемента при заданных нагрузках с использованием условия совместностей деформаций физическую, состоящую в объединении статической и геометрической частей, с использованием уравнения связи между усилиями и перемещениями (в частности, закон Гука).  [c.160]


Смотреть главы в:

Теория упругости Основы линейной теории и ее применения  -> Общие сведения о физическом законе



ПОИСК



Закон сил общий

Законы физические



© 2025 Mash-xxl.info Реклама на сайте