Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение в центральном поле сил. Задача двух тел

Это свойство движения в сопротивляющейся среде можно вывести также из уравнений (12.1), которые в рассматриваемом случае также должны допускать два первых интеграла, аналогичных интегралам площадей задачи о движении в центральном поле сил.  [c.599]

В предлагаемой работе, содержащей одиннадцать глав и два приложения, изучаются эффекты вращательного движения искусственных космических объектов и рассмотрены некоторые смежные задачи. Глава 1 посвящена в основном анализу моментов сил, действующих на спутник. Рассмотрены гравитационные моменты как в центральном ньютоновском поле сил, так и, согласно 63], при отклонении поля от центрального. Моменты аэродинамических сил давления и трения выводятся при определенных упрощающих предположениях упрощения введены и при рассмотрении моментов от взаимодействия магнитного поля спутника с магнитным полем Земли предлагаются аппроксимирующие выражения для диссипативных моментов сил, вызываемых вихревыми токами в металлической оболочке спутника. Следуя [41], рассматриваются и аппроксимируются моменты сил светового давления.  [c.11]


В принципе эти два дифференциальных уравнения первого порядка относительно неизвестных функций г () и ф( ) и исчерпывают задачу о движении точки в центрально-симметричном поле. Для их решения достаточно подставить известное значение 1 с помощью  [c.229]

Приведение задачи о рассеянии к лабораторной системе координат. В предыдущем параграфе мы рассматривали рассеяние частиц в поле неподвижного заряда, т. е. изучали движение одной точки. На практике, однако, в этом процессе всегда участвуют два взаимодействуюш,их тела, например в опыте Резерфорда мы имеем а-частицу и атомное ядро. При. этом вторая частица не является неподвижной, а перемещается в результате взаимодействия с первой. Но мы знаем, что задачу о движении двух тел, находящихся под действием центральной силы взаимного притяжения или отталкивания, можно свести к задаче о движении одного тела. Поэтому может показаться, что единственная поправка, которую нам надлежит сделать, состоит в замене массы т на приведенную массу ц. Однако в действительности вопрос этот не так прост. Дело в том, что измеряемый в лабораторных условиях угол рассеяния (мы обозначим его через ) есть угол между конечным и начальным направлениями движения частицы ). В то же время угол 0, вычисляемый по формулам соответствующей задачи для одного тела, есть угол между конечным и начальным направлением  [c.101]

Такой закон движения не может быть осуществлен криво-шипно-коромысловым механизмом (шарнирный четырехзвен-ник), Однако симметричный характер кривой пути по времени (точки 4—7 и 7—I ) позволяет сделать предположение, что для частичного решения задачи можно использовать центральный кривоши пно-ползунный механизм. Для того чтобы построить шатунный механизм с выстоем, исходя из центрального криво-шипно-ползунного механизма, необходимо наличие шести звеньев., а для перехода от поступательного движения к требуемому вращательному движению коромысла — по меньшей мере еще два звена таким образом, поставленным выше условиям можно удовлетворить при помощи восьмизвенного механизма. В случае центрального кривошипно-ползунного механизма поло-  [c.150]


Смотреть главы в:

Курс лекций по теоретической механике  -> Движение в центральном поле сил. Задача двух тел



ПОИСК



Движение двух тел

Движение полчка

Задача двух тел

Задача двух тел движения

Ось центральная

Поле центральное

Центральных сил задача



© 2025 Mash-xxl.info Реклама на сайте