Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вывод уравнений Лагранжа и уравнений Аппеля

Вывод уравнений Лагранжа и уравнений Аппеля 211  [c.211]

Уравнения Аппеля применимы, как это следует из их вывода, и к системам с голономными связями. В случае систем с идеальными связями ни в уравнениях Лагранжа для голономных систем, ни в уравнениях Аппеля для неголономных систем не входят реакции связей.  [c.381]

Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]


Горак выводит для склерономной и реономной неголономных систем в голономных и неголономных координатах, а также в склерономных параметрах обобщенные уравнения Ньютона, Лагранжа — Эйлера и Аппеля — Гиббса. Из этих уравнений получаются как частные случаи уравнения Больцмана, Чаплыгина — Воронца, Ценова и др. Из уравнений Горака можно получить также обобщенный принцип Гамильтона — Остроградского и обобщенные уравнения неголономной динамики в канонической и естественной формах. С целью упрощения установленных им уравнений 3. Горак строит неголономное многообразие со специальной метрикой — вселенную системы. Во вселенной системы, как оказывается, уравнения Лагранжа—Эйлера и Аппеля — Гиббса получают весьма простой вид. Во вселенной обобщаются также вариационные принципы механики — принципы Гаусса — Герца наименьшей кривизны и Гамильтона — Остроградского наименьшего действия. 3. Горак показывает, что принцип Гамильтона — Остроградского эквивалентен уравнениям линии вселенной . Рассматривая время как временной параметр и вводя понятие пространственно-временной силы , 3. Го-раку удалось значительно упростить выражения дифференциальных урав- 105 нений движения неголономной системы.  [c.105]

Эквивалентность уравнений Пуанкаре различным видам уравнений движения. Ранее [14-16] прямыми вычислениями была показана эквивалентность уравнений Пуанкаре движения неголономных систем уравнениям Чаплыгина, Аппеля, Гамеля, Воль-терры, Ферреса и некоторым другим уравнениям. Эквивалентность уравнений движения в квазикоординатах уравнениям Аппеля, а также уравнениям Чаплыгина была доказана в [40] выводом этих групп уравнений из принципа Даламбера-Лагранжа. Уравнения Воронца выведены из уравнений Пуанкаре (5.6) в [21] (см. пример 3.1.1).  [c.35]


Смотреть страницы где упоминается термин Вывод уравнений Лагранжа и уравнений Аппеля : [c.304]    [c.219]    [c.95]    [c.199]    [c.416]   
Смотреть главы в:

Курс лекций по теоретической механике  -> Вывод уравнений Лагранжа и уравнений Аппеля



ПОИСК



Аппель

Вывод

Вывод уравнений

Вывод уравнений Лагранжа

Вывод-вывод

Уравнения Аппеля

Уравнения Лагранжа



© 2025 Mash-xxl.info Реклама на сайте