Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Открытие элементарных частиц

Историю открытия элементарных частиц и изучения их свойств можно разбить на два этапа. На первом этапе, окончившемся в 1932 г., были открыты шесть элементарных частиц фотон, электрон, протон, нейтрон, позитрон и нейтрино. История открытия и свойства этих частиц будут кратко охарактеризованы в 75.  [c.542]

М. самой тяжёлой из открытых элементарных частиц — Z-бозона — mz 91 МэВ/с .  [c.51]

ОТКРЫТИЕ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ  [c.233]


Специальные единицы — большая группа внесистемных единиц, к которой относятся все внесистемные единицы, не вошедшие в группы кратных и дольных, относительных и логарифмических единиц. Большинство специальных единиц появилось независимо друг от др>га. Каждая из них применялась преимущественно в какой-нибудь узкой области науки или производства. Необходимость в той или иной специальной единице какой-нибудь физической величины возникала тогда, когда в действующих системах единиц не было соответствующей единицы или когда системные единицы по своим размерам оказывались неудобными для выражения данной величины. Так, с открытием элементарных частиц, энергию которых неудобно выражать в джоулях и эргах, появилась специальная единица — электронвольт. Единица длины — световой год появилась тогда, когда в астрономии возникла необходимость измерять расстояния до звезд, галактик и других звездных систем Вселенной.  [c.199]

Вряд ли можно переоценить значение тех результатов, которые были получены физиками в исследованиях рассеяния волн и частиц. За последние пятьдесят лет значительная часть важнейших открытий сделана в экспериментах по столкновению частиц обнаружение Резерфордом атомного ядра, атомная и ядерная спектроскопия, деление ядер, открытие элементарных частиц и исследование их свойств. Если дополнить эти явления всеми результатами экспериментов по рассеянию света, то получится весьма внушительный список.  [c.9]

ИСТОРИЯ ОТКРЫТИЯ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ  [c.129]

Историю открытия элементарных частиц и исследования их свойств можно (довольно условно) разбить на четыре этапа. На первом этапе, окончившемся в 1932 г., было открыто шесть перечисленных выше элементарных частиц фотон, электрон, протон, нейтрон, позитрон, нейтрино (последняя только теоретически). История открытия и свойства этих частиц были кратко охарактеризованы выше. Более подробно о некоторых из них будет рассказано в 100—103.  [c.133]

Кварки. Кроме частиц, представленных в таблице, открыто большое число частиц с очень малым временем жизни — около 10 с. Эти частицы названы резонансами. С открытием этих частиц неопределенность понятия элементарная частица стала особенно заметной.  [c.336]

После появления в 1913 г. модели строения атома Резерфорда — Бора из элементарных частиц были известны электрон, фотон и около 95 различных ядер. (Элементарной можно практически считать всякую частицу, которую трудно себе представить как состоящую из других частиц). Открытие в 1932 г. нейтрона (нейтральной частицы с массой, слегка превышающей массу протона) привело к представлению о ядрах как  [c.424]


Аналогичным образом, открытие и подтверждение существования других элементарных частиц нередко основаны на использовании законов сохранения энергии и импульса.  [c.433]

Очень важными являются и другие достижения ядерной физики и физики элементарных частиц экспериментальное открытие многих элементарных частиц и античастиц с их удивительными свойствами, исследование структуры атомных ядер и электромагнитной структуры нуклонов, попытки создания единой теории элементарных частиц, действие законов сохранения в ядерных превращениях, симметрия и асимметрия физических процессов и т. п.  [c.3]

Бурное развитие физики атомного ядра приходится на вторую четверть 20-го столетия, особенно начиная с открытия нейтрона (1932). Интенсивно изучаются свойства ядерной материи. Выдвигаются и намечаются решения проблемы структуры ядра, проблемы внутриядерных взаимодействий и процессов. В этот период было открыто много новых элементарных частиц и античастиц. Атомные ядра и процессы, протекающие в них, и составляют предмет исследования ядерной физики.  [c.7]

Элементарные частицы. Исследуются свойства экспериментально открытых частиц и античастиц. Проводится классификация элементарных частиц по их свойствам. Исследуются взаимодействия частиц и процессы их взаимопревращений. Исследуется связь между элементарными частицами и полями сил.  [c.8]

Отметим, что в этот же период Дж. Дж. Томсоном, после оригинальных исследований свойств катодных лучей (открытых еще в 1879 г.), было установлено, что катодные лучи представляют собой поток отрицательно заряженных частиц — электронов. В этих опытах Томсон установил, что масса электрона меньше одной тысячной доли массы атома водорода. Сообщение о проведенных опытах было сделано Дж. Дж. Томсоном 29 апреля 1897 г. Эту дату и принимают за дату открытия первой элементарной частицы — электрона, хотя соображения о существовании таких частиц высказывались еще раньше.  [c.10]

В шестидесятые годы были открыты резонансы — квазичастицы (короткоживущие образования, возникающие при взаимодействии элементарных частиц), проводится интенсивное их исследование. Было доказано существование двух видов нейтрино и антинейтрино, обнаружена симметрия в свойствах сильно взаимодействующих частиц и резонансов.  [c.14]

Исследования строения, свойств и превращений атомных ядер, а также исследования свойств элементарных частиц вводят нас в микромир, с его своеобразными закономерностями. Эти исследования являются уникальными, они обогатили физику важнейшими открытиями и в дальнейшем могут привести к выяснению принципиально новых законов природы. В этом научно-познавательное значение ядерной физики.  [c.14]

Открытие --мезонов (пионов). В послевоенные годы с новой силой возобновилось исследование элементарных частиц. В 1947 г. английский физик С. Пауэлл с сотрудниками на больших высотах над уровнем моря облучили космическими лучами ядерные фотопластинки, После проявления они обнаружили на пластинках треки заряженных мезонов с массой (200 300) /и,,. Дальнейшее более обстоятельное изучение показало, что треки принадлежат новым, неизвестным до сих пор частицам. Иа рисунке 24, а приведена схема движения н последовательного распада этой неизвестной (л ) частицы. При распаде этой частицы образуется мюон (р." ). Неизвестная частица была названа я -мезоном  [c.75]

Кратко перечислим известные элементарные частицы в порядке их исторического открытия.  [c.337]

Таким образом, требование неразложимости элементарных частиц явно нарушено. Открытие новых частиц (резонансов) продолжается.  [c.341]

Какие из частиц называть частицами, а какие — античастицами, до некоторой степени условно. В наше время электрон считается частицей, а позитрон — его античастицей. Но можно было бы сделать наоборот позитрон принять за частицу, а электрон — за античастицу от этого ничего не изменилось бы. Однако исторически первыми были открыты электроны, протоны, нейтроны и лишь позднее были открыты частицы (е , р, п,. . . ), получившие название античастиц. Античастица обозначается тем же символом, что и частица, но над символом ставится знак тильда ( ). Разделение всех известных элементарных частиц на частицы и античастицы в настоящее время признается одной из общих закономерностей природы.  [c.349]


Кратко перечислим известные в настоящее время связи экспериментально открытых элементарных (фундаментальных) частиц со структурными образованиями материи, попытаемся указать то место, которое занимают отдельные виды элементарных частиц в мироздании.  [c.370]

По мере углубления в микромир частиц число элементарных частиц обнаруживает неприятную тенденцию к увеличению (П. Дирак), и в настоящее время физиков поражает многообразие открытых частиц. Имеется длинный список известных элементарных  [c.383]

Второй этап исследования элементарных частиц начался в 1938 г., когда был открыт р,-мезон. Этот период исследования насыщен интереснейшими открытиями новых элементарных частиц (я- и /С-мезоны, гипероны, антинуклоны, антигипероны) и резонансов и новых свойств старых частиц (структура нуклона, прямое взаимодействие нейтрино и антинейтрино с веществом, два сорта нейтрино и др.). В связи с особым значением этих вопросов в современной ядерной физике, они будут рассмотрены более подробно ( 76—86).  [c.542]

В 1895 г. английский физик Томсон открыл первую элементарную частицу — электрон. Открытие электрона явилось результатом подробного изучения природы катодных лучей, которые оказались потоком частиц с отрицательным электрическим  [c.542]

В 1947 г. открытием пионов было положено начало новому классу элементарных частиц — мезонам. Мезоны имеют барион-ное число В = 0 все они относятся к сильно взаимодействующим  [c.700]

Кроме обычных элементарных частиц, время жизни которых определяется их нестабильностью относительно электромагнитного (х сек) и слабого (t lO сек) процессов распада, в настоящее время открыто несколько десятков весьма короткоживущих (t 10 сек) квазичастиц, или резонансов, нестабильных относительно сильного взаимодействия. Резонансы, как и обычные частицы, характеризуются массой, барионным зарядом, спином, электрическим зарядом, изотопическим спином, четностью, странностью. Единственным отличием их от обычных сильновзаимодействующих частиц (мезонов и барионов) является очень малое время жизни из-за быстрого распада. Если сравнение резонансов с обычными частицами производить в преде-  [c.703]

В 1895 г. английский физик Дж. Дж. Томсон открыл первую элементарную частицу — электрон. Открытие электрона явилось результатом подробного изучения природы катодных лучей.  [c.94]

Продолжая опыты Резерфорда, Боте и Беккер в 1930 г. обнаружили, что при облучении а-частицами некоторых легких элементов (Be, Li) последние вместо протонов испускают излучение, очень слабо поглощаемое свинцом. Детальное исследование этого излучения, проведенное в 1932 г. Чедвиком, позволило сделать вывод о том, что это излучение представляет собой поток нейтральных частиц с массой, приблизительно равной массе протона (см. 2). Вновь открытая элементарная частица была названа нейтроном. Напомним, что нейтрон, так же как и протон, имеет Б = 1, 7 = 1/2 (но 7с = —1/2), Р +1 его масса гПп = 1,00898 а. е. м. = 939,5 Мэе, спин /г/2, магнитный момент j, —1,91 1в. В отличие от протона нейтрон является нестабильной частицей. Период полураспада нейтрона 11,7 мин (см. 2, п. 3 4, п. 5 10, п. 6).  [c.544]

Драматична история открытия позитрона и его аннигиляции. Началась с того, что Дирак в 1928 г. предложил для описания движения релятивистского квантового электрона замечательное уравнение, которое удивительно хорошо без всяких эмпирических констант описывало все известные тогда тонкие детали спектра атома водорода. Вскоре, однако, было подмечено, что уравнение Дирака имеет лишние решения, соответствующие отрицательным массам и энергиям электрона. Существование же отрицательных масс явно невозможно, так как в этом случае частица двигалась бы против силы и, например, диполь из двух частиц с разными по знаку массами саморазгонялся бы. Эти лишние решения не удавалось Очеркнуть, не портя уравнения и ряда проверенных на опыте выводов из него. Тогда Дирак в 1930 г. выдвинул идею, потрясшую его современников. Он воспользовался принципом Паули и принял, что вакуум — это такое состояние, в котором заполнены все состояния электрона с отрицательной энергией. В этом случае переход электрона в состояние с отрицательной энергией невозможен. Если же вырвать вакуумный электрон из состояния с отрицательной энергией, то образуется электрон с положительной энергией и дырка на бесконечном фоне заполненных состояний. Можно показать, что такая дырка будет вести себя как частица с положительной массой (энергией) и с положительным зарядом. Дирак поначалу отождествил эту дырку с протоном. Но ему вскоре указали, что, во-первых, масса дырки должна быть строго равной массе электрона, а, во-вторых, дырка будет аннигилировать при столкновении с электроном. Тогда Дирак объявил, что предсказываемая им дырка представляет собой новую еще не открытую элементарную частицу. В эпоху, когда элементарных частиц было известно всего три, такое предсказание было столь смелым, что в него не поверили даже авторы монографий того времени, посвященных уравнению Дирака. Но вскоре (С. Д. Андерсон, 1932) позитрон был открыт в космических лучах,  [c.338]

Весь период развития пузырьковых камер — от открытия их принципа (в 1952 г.) до выявлеиия серии новых частиц буквально конвейер.чым порядком 1961 г) — занял около 10 лет. Это может служить иллюстрацией с иожности экспериментальной работы в области физики элементарных частиц. Аналогичным образом, открытие антипротона, сделанное в 1955 г., было результатом принятого в 1948 г. решения строить бэватрон — первый ускоритель, способный сообщать протонам достаточную энергию для искусственного образования антипротонов. Как видно, десять лет — не слишком долгий период для приведения в исполнение крупного проекта в области техники исследования элементарных частиц.  [c.447]

В 1937 г. К. Андерсон и С. Неддермейер открыли в составе космических лучей 1-частицы ( л , с массой около 200 электронных масс, эти частицы были названы мю-мезонами. Сразу же была обнаружена нестабильность fi-частиц, время их жизни составляет 2,2-UF сек. Несколькими годами раньше (1933) было открыто явление превращения жесткого гамма-кванта в пару электрон—позитрон ( рождение пар ) и обратное явление превращения пары электрон—позитрон в жесткие гамма-кванты ( исчезновение пар ). В этих явлениях физика встретилась с новой очень важной проблемой— с проблемой взаимопревращаемости элементарных частиц.  [c.12]


Исторически первой элементарной частицей является электрон, открытый Дж. Дж. Томсоном в 1897 г. Масса электрона =" = 9,109-10 г, т, е. в 1836,1 раза меньше массы самого легкого атома — атома водорода. Через массу электрона обычно выражаются массы других элементарных частиц. Электрон имеет отрицательный электрический заряд е = 4,803 10 ° GSE =  [c.337]

III.35). В этом и состоит закон сохранения четности. Одним из фундаментальных открытий 1956 г. было открытие Цзян Дао-ли и Чжень Нин-янга о несохранении четности при спонтанном распаде элементарных частиц, за который ответственны слабые взаимодействия.  [c.360]

В 1938 г. в составе космических лучей была открыта новая элементарная частица,. получившая название ц-мезон. В резуль тате исследования свойств ц-мезонов было установлено, что они бывают положительные и отрицательные, имеют массу 207те и примерно через 2-10 сек распадаются на электрон и 2 нейтрино .  [c.53]

В самом конце XIX в. впервые появились факты, которые поставили под сомнение элементарность атомов. В это время были открыты катодные и рентгеновские лучи, а- и р-радиоактив-ность и Y-излучение радиоактивных веществ, причем оказалось, что свойствами испускать катодные и рентгеновские лучи, а также испытывать радиоактивный распад обладают различные атомы. Таким образом, возник вопрос об атоме как о сложной системе, способной разрушаться с образованием новых атомов. Сходство свойств различных атомов позволяло надеяться на то, что устройство всех известных атомов удастся свести к различным сочетаниям и взаимодействиям небольшого числа элементарных частиц. Естественно, что на этот раз речь идет о частицах еще более элементарных, чем атомы.  [c.541]

Открытие антинуклонов положило начало новой широкой программе исследований в области физики элементарных частиц — изучению процеасов взаимодействия антинуклонов с веществом. Сюда относятся процессы рождения ангинуклонов на нуклонах и ядрах при бомбардировке их разными частицами (нуклонами и я-мезонами), процессы рассеяния и перезарядки, процессы образования антигиперонов и других странных частиц, процессы аннигиляции и другие очень интересные явления.  [c.630]

Согласно принципу зарядового сопряжения, каждой частице соответствует античастица с противоположными зарядами (электрическим, барионным, лептонным, странностью). В настоящее время античастицы обнаружены у всех элементарных частиц, кроме недавно открытого 2--гипepoнa. Противоположность всех зарядов у античастицы определяет главные особенности взаимодействий, происходящих с участием античастиц (парное рождение частицы и античастицы, взаимная аннигиляция с выделением энергии - 2тс2).  [c.702]


Смотреть страницы где упоминается термин Открытие элементарных частиц : [c.424]    [c.12]    [c.3]    [c.11]    [c.14]    [c.543]    [c.95]   
Смотреть главы в:

Ядерная физика  -> Открытие элементарных частиц



ПОИСК



История открытия элементарных частиц

Открытие

Открытие У0-частиц

Открытые

Частицы элементарные



© 2025 Mash-xxl.info Реклама на сайте