Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейно вязкоупругая прямоугольная пластина

Линейно вязкоупругая прямоугольная пластина  [c.456]

Расшифровка операторов g f, (6.83) в соответствии с (1.54) позволяет получить следующее решение задачи об изгибе симметричной по толщине прямоугольной линейно вязкоупругой трехслойной пластины  [c.360]

В результате параметры колебаний линейно вязкоупругой прямоугольной трехслойной пластины описываются соотношениями (7.203) с учетом выражений (7.209), (7.210).  [c.458]


Исследован изгиб несимметричных по толщине трехслойных упругих, линейно вязкоупругих, упругопластических и вязкоупругопластических круговых и прямоугольных пластин с жестким заполнителем. Кинематические гипотезы основаны на гипотезе ломаной нормали. Диапазон локальных квазистатических нагрузок поверхностные равномерно распределенная, параболическая, сосредоточенные силы и моменты. Учтено воздействие температурного и радиационного полей.  [c.304]

Упругие трехслойные пластины прямоугольного очертания достаточно хорошо исследованы при различных граничных условиях [126, 138, 150, 308 и др.]. Здесь рассматриваются методики построения решений для симметричных по толщине линейно вязкоупругих и вязкоупругопластических трехслойных пластин. Для тонких внешних несущих слоев (/ij = /12) принимаются гипотезы Кирхгофа, для жесткого заполнителя (/13 = 2с), воспринимающего нагрузку в тангенциальном направлении, справедлива гипотеза о прямолинейности и несжимаемости деформированной нормали. Проекции внешней нагрузки на вертикальную ось координат будут q — q x), где х = (ж], 0 2). На контуре пластины предполагается наличие жесткой диафрагмы, препятствующей относительному сдвигу слоев. Декартова система координат Xi,X2,z связывается со срединной плоскостью заполнителя. В силу симметрии задачи из пяти неизвестных перемещений Ua, Фа, W (а = 1,2 —номер координатной оси Ха) два обращаются в нуль U2 = U2 = 0.  [c.354]

Линейно вязкоупругая пластина. Решение задачи теории упругости об изгибе упругой прямоугольной трехслойной пластины следует из (6.79) при п = 1  [c.358]

Исследованы осесимметричные поперечные колебания несимметричных по толщине упругих, линейно вязкоупругих и вязкоупругопластических трехслойных пластин круговой и прямоугольной форм. Локальные нагрузки постоянные во времени, импульсные, резонансные. Учтено воздействие температурного и радиационного полей.  [c.361]

Рассматриваются методики построения решений задач о поперечных колебаниях симметричной по толщине упругой и линейно вязкоупругой трехслойных прямоугольных пластин, при тех же предположениях, что и в 6.6.  [c.454]

Для исследования колебаний линейно вязкоупругой трехслойной прямоугольной пластины вводится гипотеза о подобии ядер релаксации материалов слоев Гз( ) = br[t) и их малости (8.124). Это позволяет, как и в случае круговой пластины, применить метод усреднения для решения динамических задач вязкоупругости.  [c.456]


Длительная устойчивость свободно опертой сжатой прямоугольной пластины из ортотропного линейного вязкоупругого материала рассматривалась в рабо.тах [70, 165]. Форма прогиба в задачах этого типа определяется соотношениями между длительными модулями.  [c.251]

Получим решение об изгибе прямоугольной линейно вязко-упругой трехслойной пластины. Для этого введем следующую дополнительную гипотезу о подобии вязкоупругих свойств материалов слоев ядра релаксации несущих слоев R t) подобны ядру релаксации заполнителя Rs t) и отличаются на постоянный множитель Ь Rs t) = bR[t).  [c.358]

В первой части книги (главы 17), предназначенной в основном для студентов, рассмотрены следующие разделы курса теория напряженно-деформированного состояния, физические соот-ногления и постановки задач теории упругости, вариационные принципы, контактная задача теории упругости, плоская задача, теория пластин, теории пластичности, линейная вязкоупругость. При этом используется аппарат тензорного исчисления в прямоугольной декартовой системе коордипат. Теоретический материал сопровождается типовыми примерами регпения учебных задач. Удобные для контроля и самоконтроля знаний студентов тестовые задания приведены в приложении.  [c.7]


Смотреть главы в:

Механика слоистых вязкоупругопластичных элементов конструкций  -> Линейно вязкоупругая прямоугольная пластина



ПОИСК



Вязкоупругость

Вязкоупругость линейная

Пластина вязкоупругая

Пластина прямоугольная



© 2025 Mash-xxl.info Реклама на сайте