Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства и применение аморфных сплавов

Последняя глава (гл. 10) целиком посвящена двум, тесно связанным вопросам влиянию технологических факторов на свойства аморфных сплавов и перспективам применения этого нового класса материалов в промышленности. Влияние технологических параметров на свойства аморфных сплавов, как отмечают сами авторы, анализируется только в общих чертах. Подчеркивается, что вопрос о том, как изменяются свойства и стабильность аморфной фазы в зависимости от условий охлаждения является одним из центральных. При массовом производстве аморфных Сплавов первостепенное значение приобретает обеспечение достаточно надежной регулировки условий -охлаждения, исключающий влияние неконтролируемых факторов на качество конечной продукции.  [c.21]


Особая область применения аморфных сплавов на основе железа с добавками кобальта — это элементы магнитно-механических систем, поскольку они обладают высокой магнитострикцией, особыми упругими свойствами и высокой чувствительностью магнитных свойств к приложенным нагрузкам. Они используются для магнитострикционных вибраторов, линий задержки, механических фильтров, упругих датчиков. Сплавы с низкой температурой Кюри применяют как датчики температуры.  [c.556]

Целостное представление складывается потому, что авторы сумели в сжатой форме изложить и обсудить все вопросы научного и практического характера, связанные с данной проблемой, а именно методы получения и условия образования аморфных сплавов атомную и электронную структуру процессы структурной релаксации и кристаллизации физические, механические и химические свойства аморфных сплавов и возможные области их применения. Таким образом, в книге отражены служебные свойства аморфных сплавов и технология их получения, а также обсуждается одна из фундаментальных и далеко не решенных до конца задач физики конденсированного состояния — проблема однозначного физического описания неупорядоченных металлических систем.  [c.8]

В последнее время начались разработки.аморфных материалов для фильтров, предназначенных для очистки различных растворов. В основе этих разработок лежат такие свойства аморфных сплавов, как высокая коррозионная стойкость и высокая магнитная индукция насыщения. Изучаются возможности применения аморфных материалов в мощных магнитных полях, где эффективность фильт-  [c.302]

Применение железоникелевых аморфных сплавов обусловлено их повышенными динамическими магнитными свойствами при частотах выше 100 кГц и хорошими статическими гистерезисными свойствами, сравнимыми со свойствами пермаллоев. Они, в частности, находят применение в сердечниках малогабаритных трансформаторов, магнитных усилителях, реле, высокочастотных регуляторах, магнитных фильтрах, магнитных экранах, малочувствительных к деформациям и вибрациям. Такие экраны могут представлять собою ткани, сплетенные из узких (шириной 1...2ММ) аморфных лент. Для гибких магнитных экранов представляют интерес также сплавы на основе кобальта.  [c.557]

Для получения информации об упругих свойствах аморфных сплавов используют метод изгиба при многочисленных модификациях этой методики 12.141. Следует однако, отметить, что как и в случае одноосного растяжения, здесь наблюдается высокая чувствительность механических характеристик к геометрии и качеству поверхности ленточных образцов. Применение метода внутреннего трения для изучения неупругих свойств аморфных сплавов ограничено сложностью трактовки получаемых результатов в связи с отсутствием удовлетворительной модели. этого явления применительно к аморфному состоянию [12.151.  [c.172]


Большинство работ по аморфным сплавам имеют в основном научно-исследовательский характер и, как правило, в них еще мало дается практических рекомендаций. Получение аморфных сплавов достаточно сложно, а в компактных, более значительных объемах, еще невозможно. Аморфное состояние не устойчиво при нагреве, поэтому проблема компактирования тонких аморфных лент или порошков потребует для своего решения значительных усилий. Однако учитывая ряд особых технически интересных свойств аморфных сплавов, в частности коррозионно-электрохимических, эти материалы, несомненно, найдут полезное применение в современной технике. Уже сейчас аморфные сплавы применяют в приборостроении, главным образом, в электронике.  [c.341]

Новые металлические материалы, получаемые в экстремальных условиях и имеющие своеобразный комплекс физико-химических свойств, являются огромным резервом материалов для современной техники. Техническое освоение аморфных сплавов, нанокристаллических металлических материалов и композитов - сегодня одна из важнейших задач. В науке и технике применение таких материалов позволит резко повысить рабочие характеристики приборов и оборудования или стать единственным приемлемым техническим решением.  [c.380]

Многие аморфные металлические сплавы при низких температурах переходят в сверхпроводящее состояние. Исследование их сверхпроводящих свойств представляют большой интерес как с точки зрения развития теории сверхпроводимости, так и с точки зрения технических применений. Температура сверхпроводящего перехода (Тс) для аморфных металлов обычно ниже, чем для соответ-  [c.373]

При изучении механических свойств различных неметаллов нередко наблюдают весьма высокие значения прочности у одних (например, у алмаза, карбидов, нитридов и т. п.) и пластичности у других (например, у многих смол, даже у стекол, при достаточно высоких температурах). Сочетание же высоких значений прочности и пластичности находят только у металлических сплавов, что определяет их широкое применение в технике. Отметим, что для торможения разрушения нужна не общая, а именно локальная пластичность, характеризуемая, например, вязкостью в изломе. Сочетанием керамических волокон (ов 2000 кгс/мм2) с металлической основой (ов 350 кгс/мм ) удается совместить высокую прочность и локальную пластичность. Необходимо различать следующие механизмы пластичности сдвиговый или дислокационный аморфно-диффузионный межфазовое перемещение через растворение и осаждение меж-зеренное перемещение при наличии рекристаллизации.  [c.119]

До сих пор мы обсуждали только те аморфные сплавы, которые могут быть использованы как магнитномягкие материалы. Однако, с точки зрения других функциональных магнитных свойств аморфные сплавы имеют, вероятно, также очень большие возможности, которые, правда, подробно пока не изучены. Упомянутое выше применение аморфных сплавов, полученных напылением, для производства лент магнитной записи указывает на одно из направлений практического использования особенностей этих материалов. Другими перспективными направлениями может служить использование быстрозакаленных аморфных лент в качестве магнитострикци-онных вибраторов и элементов в линиях задержки, а также в качестве инварных материалов, что и будет кратко рассмотрено ниже.  [c.174]

Важной областью практического применения аморфных сплавов с большой магнитострикцией являются устройства, получившие название ультразвуковых линий задержки (УЛЗ). Из магиитострикцнонных. материалов изготавливают сердцевинный элемент этих устройств — звукопровод,, при помощи которого электрические сигналы преобразуются в акустический сигнал и наоборот. Распространение акустических сигналов в звукопроводе происходит со значительно меньшей скоростью, чем электрических сигналов по элементам схемы. В ре-зультате происходит задержка сигналов во времени. Одним из преимуществ аморфных сплавов является то, что они одновременно могут обладать инвар-ными и элинварными свойствами, что обеспечивает очень низкий температурный коэффициент времени задержки. УЛЗ широко используют в радиотехнике, в частности, в радиолокации, цветном телевидении, для преобразования и обработки (кодирование и декодирование) сигналов, а также в электронно-вычислительной технике. Прим. ред.  [c.174]


Особые свойства аморфных сплавов как магнитно-мягких материалов обусловлены механизмом диссипации энергии при подведении внешней энергии. В силу своего структурного состояния они не способны дис-сипировать энергию путем пластической деформации, и поэтому их можно деформировать упруго в достаточно широком интервале напряжений без ухудшения магнитных свойств (пластическая деформация ухудшает магнитные свойства материала). Этим в значительной мере обусловлена достаточно широкая область применения аморфных сплавов как ма-терилов с особыми магнитными свойствами. Кроме того, в аморфных сплавах в большей степени, чем в сплавах с кристаллическим строением проявляются эффекты магнитного последействия [493]. Это связано со стабилизацией границ доменов вследствие композиционного направленного упорядочения. Для магнитного последствия характерны обратимость магнитных свойств по отношению к магнитному и термическому воздействиям. Стабилизация границ доменов (магнитного последействия) влияет на гистерезисные свойства аморфных сплавов, что является важным способом улучшения комплекса гистерезисных магнитных свойств аморфных материалов. Улучшенным комплексом магнитных свойств обладают и мелкокристаллические сплавы с размером зерна менее 10-50 мкм.  [c.302]

Наконец, косвенным методом изучения свойств приграничных зон зерен, обогащенных при развитии отпускной хрупкости атомами примесей, можно считать выбор в качестве объекта исследования аморфных металлических сплавов. Этот метод основан на отмеченной в работах [217, 268] аналогии между структурой и химическим составом аморфных сплавов на основе железа, которые в качестве аморфк заторов содержат 10—20 % металлоидных элементов, в частности фосфора, и границ зерен (в кристаллических сплавах железа), обогащенных теми же элементами примерно до таких же концентраций и имеющих структуру и свойства, описываемые так же как и структура аморфных сплавов в терминах полиэдров Бернала [176]. Так, в предположении, что аморфный сплав 682 8 является макроскопической моделью границ зерен, обогащенных фосфором, в кристаллическом сплаве Ре — Р, была проверена и подтверждена [217] гипотеза о влиянии зернограничной сегрегации фосфора (обусловленной, например, развитием отпускной хрупкости) на накопление атомарного водорода в местах выхода границ зерен на поверхность сплава, находящегося в водородсодержащей среде. По-видимому, этот метод может быть успешно применен и для решения других задач, связанных с исследованием свойств обогащенных границ зерен.  [c.29]

Таким образом, применение гидрогенизированных аморфных сплавов кремния с азотом и с элементами четвертой группы периодической системы наряду с возможностью эффективного легирования открывает широчайшие возможности в управлении свойствами этих материалов.  [c.22]

Магнитные материалы. На рис. 3.19 — 3.21 приведены данные, иллюстрирующие влияние размера кристаллитов на магнитные свойства материалов различных типов. В последние годы благодаря изучению свойств наноматериалов, полученных контролируемой кристаллизацией из аморфного состояния, японскими учеными был открыт новый класс магнитомягких материалов с высоким уровнем статических и динамических магнитных свойств по сравнению с аналогичными по назначению кристаллическими и аморфными сплавами. Это сплавы на основе Ре —81 —В с небольшими добавками N6, Си, 2г и некоторых других переходных металлов (например, Р1пете1 в Германии сплавы этого типа называются Витроперм ). После закалки из расплава эти сплавы аморфны, а оптимальные параметры достигаются после частичной кристаллизации при температуре 530 —550 °С, когда выделяется упорядоченная нанокристаллическая фаза Ре —81 (18 — 20) % с размером частиц около 10 нм. Объемная доля наночастиц в аморфной матрице составляет 60 — 80 %. Сплавы обладают низкой коэрцитивной силой (5— 10 А/м) и высокой начальной магнитной проницаемостью при обычных и высоких частотах при малых потерях (200 кВт/м ) на перемагничивание, что обеспечивает их широкое применение в электротехнике и электронике в качестве трансформаторных сердечников, магнитных усилителей и импульсных источников питания, а также в технике магнитной записи и воспроизведения и т.д., обеспечивая значительную миниатюризацию этих устройств и стабильную работу в широком диапазоне частот и температур. Мировой выпуск сплавов оценивается на уровне 1000 т в год [39].  [c.162]

Полученные в ходе многих успешных экспериментов характеристики свойств аморфных металлов обусловили повышенный интерес к практическому применению этих материалов. Это видно по табл. 1.1, где сделана попытка проследить историю развития исследований аморфных металлов. В 1970 г. появилась основная технология получения непрерывных аморфных металлических лент методы центробежной закалки [2, 4] и закалки в валках (прокатки расплава) [5]. До этого удавалось получать лишь небольшие аморфные пластинки. Именно тогда, с появлением возможности изготовления лент, было установлено, что сплавы, хрупкие в кристаллическом состоянии, при аморфизации приобретают высокую пластичность и прочность [2, 6]. То, что до тех пор интересовало лишь экспериментаторов-одиночек, вдруг оказалось в центре всеобш,его внимания. После 1970 г. появились многочисленные разработки аморфных сплавов, были открыты многие другие их интересные свойства. Так, в 1974 г. были обнаружены свер хвысокая коррозионная стойкость [7] и высокая магнитная проницаемость [8, 9] аморфных сплавов. Сегодня эти новые материалы из мечты превратились в реальность.  [c.26]

Одной из причин, по которой аморфные сплавы привлекают к себе внимание как промышленные материалы, являются их особые электронные свойства, резко отличающиеся от электронных свойств обычных кристаллических металлов. В настоящей главе в общих чертах рассматриваются энергетические состояния электронов аморфных металлов и сплавов в обычном (несверхпроводящем) состоянии и явления электронного переноса. Сверхпроводимость аморфных металлов в настоящее время является предметом интенсивных исследований с точки зрения как физической стороны явления, так и его практического применения, и поэтому выделена в отдельную главу. Магнитные. свойства амЮрфных леталлов, также обусловленные электронными процессами, уже подробно рассматривались в главе 5, как наиболее изученные свойства аморфных металлических материалов, поэтому здесь мы не будем к ним возвращаться.  [c.177]


Аморфные металлы можно получать весьма разнообразными способами (см. гл. 2). Условия охлаждения и механизмы аморфи-зации при этом различаются. В случае применения методов напыления, распыления и металлизации полной ясности в отношении механизмов аморфизации и условий охлаждения пока нет. Что касается получения аморфных металлов методами закалки из жидкого состояния, то эти случаи исследованы достаточно подробно, но поскольку все же имеются ощутимые различия как в процессах затвердевания, так и в условиях охлаждения при применении разных модификаций метода, в полной мере оценить влияние охлаждения на свойствах аморфных металлов здесь пока также не представляется возможным. Сложность проблемы заключается также и в том, что влияние охлаждения на свойства того или иного аморфного сплава тесно связано с его способностью к аморфизации. Поэтому пока необходимо в каждом случае проводить тщательное исследо-  [c.292]

Выше были рассмотрены различ1р>1е технологические факторы, которые необходимо учитывать при разработке практического применения аморфных металлических материалов. В этом разделе будут описаны некоторые приемы прогнозирования сплавов с конкретными свойствами и показаны примеры использования этих сплавов..  [c.296]

Аморфные металлы часто называют материалами будущего, фантастическими материалами, что вызвано уникальностью методов их получения и особыми свойствами, не встречающимися у кристаллических металлов. Вероятно, в будущем аморфные сплавы получат широкое развитие. Однако аморфные материалы не лишены недостатков. Один из них — это их невысокая термическая устойчивость, другой — недостаточная стабильность во времени, что снижает их надежность. Третий недостаток — это малые размеры получаемых лент, проволоки, гранул. Еще одним недостатком аморфных металлов является их полная несвариваемость. Следовательно, аморфные металлы не пригодны для крупногабаритных конструкций, невозможно их использовать в качестве высокотемпературных материалов. Поэтому применение аморфных металлов, вероятно, будет ограничено только малогабаритными изделиями.  [c.304]

Исследование механических свойств массивных аморфных образцов на основе интерметаплических систем показало, что по уровню предела прочности при изгибе (1600 МПа) сплавы близки к прочности тонких лент, а по сравнению с кристаллическим состоянием их прочность выше в 1,5—2 раза. Получение аморфных сплавов типа интерметаллид-интерме-таллид расширило область их возможного применения в качестве конструкционных и функциональных материалов.  [c.276]


Смотреть страницы где упоминается термин Свойства и применение аморфных сплавов : [c.109]    [c.10]    [c.10]    [c.22]    [c.105]    [c.558]    [c.4]   
Смотреть главы в:

Металлы и сплавы Справочник  -> Свойства и применение аморфных сплавов



ПОИСК



Аморфное юло

Аморфные сплавы применение

Сплав аморфные

Сплавы Применение

Сплавы аморфные - Назначение, свойства 306 - Область применения 306, 307 - Способ получения: закалкой 307, 308 осаждением



© 2025 Mash-xxl.info Реклама на сайте