Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общая устойчивость балок при поперечном изгибе

Под действием вертикальных нагрузок ходовые пути подвергаются общему поперечному изгибу и местному изгибу (отгибу) полок балки пути под катками кареток. Рассчитывают пути по суммарному напряжению на изгиб, на прогиб и устойчивость. Ходовые пути из гнутых профилей швеллерного сечения и уголков подвергаются также стесненному кручению из-за эксцентричного расположения катков кареток относительно вертикальной оси сечения профиля.  [c.101]


При изгибе балки положение ее в соответствующей плоскости может при определенных условиях перейти в неустойчивую форму равновесия с выпучиванием сжатого пояса и поворотом поперечных сечений. Такая форма потери балкой плоской формы изгиба называется потерей общей устойчивости, а силы и напряжения, возникающие при этом, — критическими. Если балка обладает общей устойчивостью, а стенки или сжатый пояс оказываются неустойчивыми, то произойдет так называемая потеря местной устойчивости с выпучиванием стенки из плоскости балки, а пояса — в плоскости балки. Потеря балкой общей устойчивости, которая рассмотрена в работе [10], более опасна, чем потеря отдельными местами балки местной устойчивости, когда часть соответствующего листа выключается из работы, вызывая в сечении перераспределение напряжений.  [c.261]

В коробчатых пролетных строениях, обладающих повышенной жесткостью как в вертикальном, так и в горизонтальном направлениях, обычно наблюдается только местная потеря устойчивости. Металлические ба 1ки пролетных строений открытого сечения, не имеющие объединения с плитой проезжей части, могут потерять общую устойчивость при изгибе и отклониться с закручиванием из своей плоскости. Такие случаи возможны в сборно-разборных металлических эстакадах, а также во время монтажа пролетных строений, когда балки нагружены, но не объединены между собой поперечными связями или верхней плитой.  [c.318]

Лроверка на устойчивость плоской формы изгиба мостовой коробки с мембранами может выполняться как для каждой продольной балки с расчетной длиной пролета U между соседними узлами связей, так и для коробки (набора) в целом (I — длина между опорами). Ниже решение ведем для всей балки, как дающее меньшее значение критической нагрузки. При выводе выражения критерия устойчивости для рассматриваемой схемы используем общие результаты исследований по теории устойчивости [1]. Для достаточно жестких связей (концевых и промежуточных мембран, а также листов верхнего и нижнего поясов) коробка подобного типа приближается по характеру возможной общей деформации к случаю поворота монолитных поперечных сечений без искажения их контуров.  [c.7]

Задачи об устойчивости плоской формы изгиба двутавровых балок решены проф. С. П. Тимошенко ). Им же исследован целый ряд задач об устойчивости кривых стержней, пластин и случаев продольно-поперечного изгиба. Эта последняя задача была впервые рассмотрена проф. Бубновым для неразрезной балки на упругих опорах ). Им же были решена некоторые задачи об устойчивости пластин. Ряд задач об устойчивости упругих плит был впервые решён академиком Б. Г. Галёркиным ). Его общий метод приближённого решения задач устойчивости упругих систем получил широкое распространение в СССР и за границей. Задача о формах равновесия сжатых стержней была подробно исследована академиком  [c.672]


Так, при изготовлении сварной тонкостенной балки (рис. У1П. 1, в) одновременно с общими деформациями существуют местные деформации в виде потери устойчивости стенки, которые образуют ряд бухтин со стрелками прогиба fl и /2, и угловые деформации, приводящие к поперечному изгибу поясов, отмеченному углами р, с одновременным их поворотом относительно стенки,  [c.383]

Части корпуса, обеспечивающие общую продольную крепость корабля, т. е. продольные связи корпуса, идущие непрерывно по всей длине или на значительной части длины его (стрингеры, наружная обшивка, внутреннее дно, палубы, продольные бимсы, продольные переборки) эти части корпуса, рассматриваемые совместно, представляют собой с точки зрения строительной механики составную балку, подверженную действию изгибающих моментов и срезывающих сил рассматриваемые же в отдельности, они представляют собой подкрепленные пластины и балки, подверженные растягивающим и сжимающим нагрузкам. 5) Части корпуса, обеспечивающие поперечную крепость корабля (поперечные переборки, палубы, поперечные бимсы, шпангоуты, днище). 6) Части корпуса, предназначенные для воспринятия различных местных или временных нагрузок (подкрепления) и передачи их на связи третьей категории (подкрепления под орудия, броню, рубки, машинные фундаменты, подкрепления для постановки в док и т. п.). 7) Части корпуса, служащие для увеличения устойчивости листов и балок (набор днища и палуб, обеспечивающий устойчивость наружной обшивки и настилки палуб поперечный набор, увеличивающий устойчивость стрингеров и пр.). 8) Части корпуса, служащие для соединения листов и профилей, идущих на постройку (заклепочные соединения) заклепочные соединения корпуса входят в состав связей всех предыдущих категорий и помимо общей теории их рассматриваются каждый раз отдельно при расчете этих связей. Из приведенного разделения частей корпуса по характеру их работы на различные категории видно, что в судовом корпусе нет строгого разделения функций,выполняемых отдельными связями его, что и является отличительным свойством этой конструкции в ряду других инженерных сооружений напр, наружная обшивка днища д. б. отнесена к связям всех пяти первых категорий она воспринимает давление воды, служит нижним пояскомг у стрингеров и шпангоутов и т. о. принимает участие в работе связей второй категории, является подкрепленной пластиной (днищем) уравновешивЕ ющей реакции противоположных бортов, является главной связью в обеспечении общей продольной и поперечной крепости корабля. Другой особенностью конструкции судового корпуса является обилие в этой конструкции частей, работающих на продольный изгиб, т. е. частей, требующих проверки и обеспечения их устойчивости эта особенность конструкции кор-  [c.98]

Э. Хвалла ) исследовал поперечное выпучивание балок несимметричного профиля и дал общий вид уравнений, из которых уравнения для двутавровой балки получаются как частный случай. Автор настоящей книги изложил общую теорию изгиба, кручения и устойчивости тонкостенных элементов открытого профиля ). В. 3. Власов развил в своей книге ) иной метод подхода к теории устойчивости, указав, что для тонкостенных стержней принцип Сен-Вена на теряет силу и что, например, в элементе зетового профиля можно вызвать кручение, приложив по торцам к его полкам изгибающие моменты.  [c.495]

Испытания, (проведенные в последнее время в Бельгии [7] и в Лихийском университете [8], показали, что сварные балки с тонкой стенкой успешно работают при статических нагрузках благодаря полю растяжения в стенке, возникающему после потери устойчивости. Однако в условиях переменной нагрузки поперечные деформации тонкой стенки вызывают появление местных напряжений изгиба в местах приварки стенки к поясам и ребер жесткости к стенке. Наложение этих напряжений на напряжения от общего изгиба балки в сочетании с касательными напряжениями в стенке понижает прочность стенки при переменных напряжениях (табл. 10.6).  [c.264]


Смотреть страницы где упоминается термин Общая устойчивость балок при поперечном изгибе : [c.148]    [c.63]    [c.20]    [c.104]   
Смотреть главы в:

Справочник машиностроителя Том 3 Изд.2  -> Общая устойчивость балок при поперечном изгибе

Справочник машиностроителя Том 3 Издание 2  -> Общая устойчивость балок при поперечном изгибе

Справочник машиностроителя Том 3  -> Общая устойчивость балок при поперечном изгибе



ПОИСК



Балки Устойчивость при поперечном изгиб

Изгиб балок

Изгиб поперечный

Изгибающие при поперечном изгибе балок

Общая устойчивость

Поперечная устойчивость

Устойчивость Устойчивость общая

Устойчивость Устойчивость при изгибе

Устойчивость балок

Устойчивость балок общая балок при поперечном изгибе



© 2025 Mash-xxl.info Реклама на сайте