Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испытания материалов с покрытиями на термическую усталость

Наряду с положительным защитным влиянием от воздействия газовой среды, покрытие изменяет- физико-механические свойства поверхностного слоя, в частности уменьшается пластичность его при низких температурах, что снижает сопротивление термической усталости. Повреждающее действие покрытий можно выявить при испытаниях на термоусталость без воздействия газовой среды, т. е. при разделении двух различно влияющих факторов снижения механических свойств и защитного действия от влияния среды. При этом выясняется, что долговечность материала с покрытием меньше, чем материала без покрытия. Влияние алитирования на сопротивление термической усталости литейного никелевого сплава по-казано на рис. 5.14. Алитирование круглых образцов с диаметром рабочей зоны 6,5 мм производилось диффузионным методом при 950 С в течение 4 ч, глубина алитированного слоя составляла 40 мкм. Как видно, алитирование несколько снижает долговечность при термоциклическом нагружении. Однако влияние алитирования уменьшается по мере уменьшения размаха деформаций.  [c.174]


Разработка и совершенствование методов испытаний на термическую (термомеханическую) малоцикловую усталость металлов и жаропрочных сплавов имеет существенное значение при получении базовых расчетных характеристик деформирования и разрушения материалов и является основой для оценки несущей способности элементов теплонапряженных и высоконагруженных конструкций обоснования выбора материала конструкций, работающих при термомеханическом и термоусталостном нагружениях прогнозирования долговечности конструкций оценки роли технологических факторов (литья, покрытия и т.п.).  [c.127]

Как было показано выше, №—покрытия, полученные химическим восстановлением и термообработанные обычным способом, характеризуются значительными растягивающими остаточными напряжениями, вызывающими образование микротрещин в поверхностном слое и способствующими снижению предела усталости основного материала. По-иному протекает образование внутренних напряжений при термической обработке покрытий т. в. ч. При этом способе наиболее быстрому разогреву подвергается лишь тонкий слой покрытия, в котором непосредственно образуются вихревые токи. Что касается основного материала, то он нагревается главным образом за счет теплопередачи. После прекращения действия т. в. ч. тонкий слой покрытия остывает гораздо быстрее, чем нижележащий слой металла. Наступает момент, когда покрытие охладится до такой степени, что перестанет сокращаться, тогда как охлаждение нижележащего слоя металла будет продолжаться, его объем, сокращаясь, будет стягивать наружную твердую корку и создавать в ней сжимающие напряжения. Взаимодействие тепловых и структурных напряжений приводит к характерному для поверхностно закаленных изделий преобладанию напряжений сжатия над напряжениями растяжения. Так, для стальных образцов в закаленном слое образуются сжимающие напряжения, достигающие на поверхности 60—80 кгс/мм , которые на границе закаленного слоя переходят в растягивающие (20—30 кгс/мм ). Оказалось, что эти закономерности применимы и для случаев, когда поверхностным слоем является металлопокрытие, полученное химическим восстановлением солей соответствующих металлов. Подвергая металлопокрытия термической обработке т. в. ч. и соответственно регулируя как скорость нагрева, так и скорость охлаждения, можно добиться изменения характера и величины внутренних напряжений таким образом, чтобы в поверхностном слое преобладали сжимающие напряжения. Для проверки влияния этого фактора на предел выносливости стали 45 были проведены соответствующие испытания. Стандартные образцы консольного типа без покрытия и с покрытием толщиной 40 мкм, с 10% Р, полученным из  [c.297]


Испытания на термическую усталость. В процессе эксплуатации температура деталей с покрытиями может циклически изменяться, т. е. на изделие периодически действует слабый тепловой удар. В этих случаях покрытия, как и основной материал, подвержены термической усталости. При испытаниях имитация рабочих условий осуществляется путем нагревания образца до заданных температур в течение некоторого времени, а зате м охлаждения до комнатной или другой относительно низкой температуры (100—150°С). Эти циклы повторяются либо до разрушения покрытия, либо определенное число раз. Возможны различные сочетания температурных интервалов и длительности испытаний при каждой температуре. Для создания требуемых температур и различных условий эксперимента используют печи, торелки п специальные камеры [147, 150].  [c.180]

В рая группа методик предназначена для оценки сопротивления различных материалов, в том числе покрытий, термической усталости. Основными для этой группы являются требования по сопоставимости условий натружения и недопустимости существенного превышения термических нагрузок (для форсированного получения заметной поврежден-ности материала при термоциклировании) по сравнению с эксплуатационными. Нарушение этого условия, приводя к изменению механизмов повреждения, приводит к некорректным выводам о реальных возможностях материалов. Предпочтение при этом целесообразно отдать испытанию моделей, сопоставляя результаты по характеру и степени повреждения областей максимальной нагруженности материала в масштабе действующих (расчетных) температур, напряжений, деформахщй или их амплитуд (размахов) в цикле.  [c.334]

По-видимому, роль покрытия при больших и малых уровнях нагружения аналогична действию наклепа, что отмечено еще в одной из первых работ Коффина [88]. При испытании на термическую усталость стали 347 на уровне Ае 0,6% йен а клепанный материал имел большую долговечность, а при уменьшении нагрузки положение изменилось на обратное. Это явление можно объяснить следующим образом. Ресурс пластичности у ненакле-панного материала больше, чем у наклепанного, и при Ае> >0,6%, когда в каждом цикле возникает пластическая деформация, это обстоятельство является решающим. При меньших значениях Де деформирование происходит в упругой области, где долговечность определяется в большей мере характеристиками прочности, а они. выше у наклепанного материала.  [c.93]

Предварительные испытания показали, что повысить сопротивление термической усталости можно и с помощью гальванического покрытия например, никепем толщиной 20 мкм. Также хорошие результаты были получены с покрытиями из никеля и хрома, а также никеля (толщиной 55 мкм) и вольфрама (32 мкм) [148]. Результаты испытаний по методу вращающегося диска диаметром 60 мм из стали 50S2M при термическом цикле 293 973 К показали, что защита поверхности от коррозии вно сит определенный вклад в повышение сопротивления термической усталости, особенно при охлаждении водой. Проверочные испытания, проведенные на образцах диаметром 180 мм из стали 20Х2М после нормализации, также дали положительные результаты для покрытий из хрома, никеля и никеля-вольфрама Среднее сопротивление термической усталости для образцов с покрытием из никеля достигало 1300 циклов, а с покрытием из хрома и никеля — вольфрама соответственно 1500 и 1020 циклов. Применение этих покрытий [148] заметно ограничило склонность материала к образованию сетки поверхностных трещин.  [c.119]

Предложена [161 методика испытания, которая позволяет учитывать колебания механической и термической нагрузок, ожидаемые при эксплуатации изделия. Образец с покрытием испытывают при температуре, близкой к максимальной рабочей. Применяют сочетание, постоянной нагрузки, составляющей обычно 85% предела длительной прочности основного материала при температуре испытания и переменной нагрузки. Влияние термических циклов шределяется испытаниями, аналогичными описанным В. Л. Эйв-зш [21]. При термической усталости под напряжением образцы нагружаются до уровня, соответствующего приблизительно пре-щщгьной нагрузке при максимальной температуре испытания, в атем образец подвергается действию термических циклов от комнатной до предельной температуры.  [c.254]



Смотреть страницы где упоминается термин Испытания материалов с покрытиями на термическую усталость : [c.274]    [c.330]    [c.203]   
Смотреть главы в:

Исследование структуры и физико-механических свойств покрытий  -> Испытания материалов с покрытиями на термическую усталость



ПОИСК



Испытание материалов

Испытание материалов на усталость

Испытание усталость

Испытания термические

Материалы для Покрытий

Усталость

Усталость и термическая усталость

Усталость материалов

Усталость термическая

Усталость — Испытания усталости



© 2025 Mash-xxl.info Реклама на сайте