Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отражение ударной волны от неподвижной стенки

Решение. В результате падения ударной волны на твердую стенку возникает отраженная ударная волна, распространяющаяся от стенки. Будем отмечать индексами 1, 2, 3 соответственно невозмущенный газ перед падающей ударной волной, газ позади падающей волны (он же является газом впереди отраженной волны) и газ позади отраженной волны (рис. 79 стрелками показано направление движения ударных волн и самого газа). Газ в граничащих с твердой стенкой областях / и 3 покоится (относительно неподвижной стенки). Поэтому относительная скорость газов по обе стороны разрыва друг относительно друга в обоих случаях — в падающей и отраженной ударных волнах — одинакова (равна одной и той же величине — скорости J  [c.525]


Пусть по неподвижной относительно стенки равновесной смеси навстречу этой стенке идет стационарная ударная волна, равновесные состояния за которой будем обозначать верхним индексом (1). Эта ударная волна падает на стенку, отражается и идет в обратном направлении. Равновесное состояние, реализующееся за отраженной ударной волной после ее выхода на стационарный режим, будем обозначать верхним индексом (2).  [c.96]

По одну сторону диафрагмы в трубе содержится исследуемый газ А при низком давлении, по другую — в так называемую камеру высокого давления нагнетается рабочий газ В. После разрыва диафрагмы газ В расширяется в сторону камеры низкого давления, посылая в газ А сильную ударную волну. Возникаюш ий режим, изображенный на рис. 1.47, б, будет более подробно рассмотрен в гл. IV при изучении работы ударной трубы. Соответствуюш им выбором газов Л жВж перепада давлений добиваются получения возможно более сильной ударной волны и нагревания исследуемого газа до весьма высоких температур. Одним из способов получения еш е более высоких температур служит осуш ествление первого режима — столкновения двух ударных волн. Частным случаем первого режима является отражение ударной волны от торца ударной трубы, которое также используется для достижения в лаборатории высоких температур. Отражение ударной волны от твердой стенки действительно представляет собой частный случай столкновения двух газовых потоков. Если друг на друга налетают два совершенно одинаковых потока, то после столкновения контактный разрыв покоится, т. е. положение такое же, как будто вместо контактного разрыва имеется неподвижная твердая стенка. Вопросы столкновения ударных волн и отражения их от стенки также будут рассмотрены в гл. IV.  [c.81]

Из задач с двумя пространственными координатами мы рассмотрим отражение акустической и ударной волны от жестких стенок, образующих угол. В этих задачах параметры газа оказываются однородными функциями нулевого порядка относительно времени. Рассмотрим вначале уравнения движения газа, обладающего этим свойством. Будем исходить из уравнений осесимметричного движения. Пусть рассматривается адиабатическое движение невязкого газа с постоянной энтропией при отсутствии внешних сил. Направим ось х неподвижных координат по оси  [c.454]


Отражение ударной волны от неподвижной стенки. После отражения ударной волны от торца КНД давление и температура газа на стенке сугцественно возрастают (см. эпюры, соот-ветствуюн] ие f = 16 мс па рис. 4.5.1, и осциллограммы давления на торце, соответствующие а = 4 м на рис. 4.5.3). После  [c.355]

Рис. 4.5.5, Расчетные распределения (эпюры) давления газа (а) и скоростей фаз (б) в различные моменты времени и изменения во времени ( осциллограммы ) давления газа и импульса частиц (в) в двух точках ( па двух датчиках при х = 0 (иа стейке) и а = — 0,5 м) при прохождении через слой газовзвеси (воздух -f- частицы кварца с исходными параметрами ро = 0,1 МПа, То 293 К, pWpio = 2,1, а = 30 мкм) стационарной ударной волны (ре/ро = 6) и отражении ее от неподвижной стенки (х = 0). Цифровые указатели на рис. а и б соответствуют различным моментам времени t (мс), причем t = 0 соответствует моменту, когда волна достигает стенки (i = 0). Цифровые указатели на рис. в соответствуют координате датчика х (м). Сплошные линии — скорость и давление газа, пунктирные линии — скорость частиц (б) и импульс частиц (а) Рис. 4.5.5, Расчетные распределения (эпюры) <a href="/info/190167">давления газа</a> (а) и скоростей фаз (б) в различные моменты времени и изменения во времени ( осциллограммы ) <a href="/info/190167">давления газа</a> и импульса частиц (в) в двух точках ( па двух датчиках при х = 0 (иа стейке) и а = — 0,5 м) при прохождении через слой газовзвеси (воздух -f- частицы кварца с <a href="/info/271909">исходными параметрами</a> ро = 0,1 МПа, То 293 К, pWpio = 2,1, а = 30 мкм) <a href="/info/192550">стационарной ударной волны</a> (ре/ро = 6) и отражении ее от неподвижной стенки (х = 0). Цифровые указатели на рис. а и б соответствуют различным моментам времени t (мс), причем t = 0 соответствует моменту, когда волна достигает стенки (i = 0). Цифровые указатели на рис. в соответствуют координате датчика х (м). <a href="/info/232485">Сплошные линии</a> — скорость и <a href="/info/190167">давление газа</a>, пунктирные линии — <a href="/info/203588">скорость частиц</a> (б) и импульс частиц (а)
УДАРНАЯ ТРУБА — устройство для получения ударных волн в лабораторных условиях. Применяется для нагревания газов с помощью ударных волн и исследования кинетики разнообразных физико-химич. процессов, протекающих нри высоких темп-рах колебаний и диссоциации молекул, хим. реакций, исни-аации. излучения и погло-щения света и т. д. У. т. представляет собой длинную трубу, разделенную диафрагмой 1 а две части. Диаметры У. т. составляют обычно от неск. с.м до неск. десятков см, а длины — до 10 и более м. В камеру высокого давления нагнетается рабочий газ до неск. сотен атм. Камера низкого давления наполняется исследуемым газом при давлениях от атмосферного до неск. микрон рт. ст. В нужный момент диафрагму разрывают, и сжатый рабочий гая, расширяясь, устремляется в камеру низкого давления, соядавая в нем ударную волну. Между фронтом ударной волны и контактной поверхностью (рис.), разделяющей два газа, образуется пробка нагретого исследуемого газа. Дойдя до конца трубы, к-рый обычно закрыт неподвижной крышкой, ударная волш) отражается и идет обратно, навстречу основному потоку. При отражении темп-ра газа резко повышается между фронтом отраженной ударной волны и задней стенкой трубы образуется область неподвижного, еще более высоко нагретого газа.  [c.232]

На рис. 6.7.14 приведен результат численного эксперимента, иллюстрирующий волновой процесс в слое пузырьковой жидкости, или, другими словами, пузырьковом или пористом экране (0 г 0,4 м), прилегающем к неподвижной стенке РГ (г = 0,4 м) и отделяющем ее от области, занятой газом (г<0). Из газа на контактную границу К (г = 0) между газом и пузырьковой жидкостью падает ударный импульс. Момент достижения фронтом этого импульса границы К принят за 1 = 0. Распределение давления по координате исходного импульса показано на рис. б за 0,1 мс до достижения импульсом границы К (г = — 0,1 мс). В этот момент длина импульса Lg 0,35 м. В результате взаимодействия этого импульса с контактной границей К в газ отражается ударная волна, параметры и эволюция кото-ро1г будут практически такими же, как при отражении рассматриваемого импульса от неподвижной стенки (см. обсуждение после рис. 6.7.12). Одновременно в пузырьковый слой пройдет ударный импульс сжатия. На рис. 6.7.14 представлен такой вариант, когда характеристики пузырьковой жидкости, развертка давления р 0, I) при г = 0 (показанная линией К на рис. г), а следовательно, и прошедший в пузырьковый слой импульс точно такие же, что и на уже обсуждавшемся рис. 6.7.5, в. Соответствующий период до момента, когда импульс достигает стенки , показан в виде эпюр давления на рис. б. После отражения от неподвижной стенки Ш сигнал вернется на границу К здесь возникает волна разрежения, как на свободной поверхности, где р = Ро. Эта волна может вызвать снижение давления по сравнению с начальным. Эпюра давления при i = 18,2 мс соответствует максимальному снижению давления за все время процесса, когда пузырьковый экран из-за упругости газа и инерции жидкости расширяется.  [c.104]



Смотреть страницы где упоминается термин Отражение ударной волны от неподвижной стенки : [c.280]    [c.104]   
Смотреть главы в:

Динамика многофазных сред. Ч.1  -> Отражение ударной волны от неподвижной стенки



ПОИСК



Волны ударные

Отражение

Отражение волн

Отражение ударных волн

Ударная неподвижная



© 2025 Mash-xxl.info Реклама на сайте