Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сложение плоской системы параллельных сил

СЛОЖЕНИЕ ПЛОСКОЙ СИСТЕМЫ ПАРАЛЛЕЛЬНЫХ СИЛ  [c.43]

Пусть дана произвольная плоская система параллельных сил.. Пользуясь теоремой о сложении параллельных сил, сложим отдельно все силы, направленные в одну сторону, и все силы, направленные в противоположную сторону. В результате получим систему двух сил, эквивалентную данной системе (рис. 3.9)  [c.36]

Равнодействующая пространственной системь сходящихся сил так же, как и в случае, когда сходящиеся силы лежат в одной плоскости, равна геометрической сумме слагаемых сил, т. е. выражается по величине и направлению замыкающей стороной силового многоугольника, стороны которого равны и параллельны данным силам. Следовательно, R = Fi. В частном случае, когда число слагаемых сил, не лежащих в одной плоскости, равно трем, их равнодействующая выражается по величине и направлению диагональю параллелепипеда, построенного на этих силах. Силовой многоугольник, построенный для пространственной системы сходящихся сил, не является плоской фигурой. Поэтому при сложении сил, не лежащих в одной плоскости, предпочтительнее аналитический способ.  [c.11]


Допустим, что нам даны две параллельные силы Р и Р" определить их равнодействующую Р. Такая задача соответствует первому случаю — приведению плоской системы сил к одной равнодействующей, т. е. обычному графическому методу сложения двух сил и определению величины, направления и точки приложения их равнодействующей.  [c.50]

Веревочный многоугольник, а) Сложение сил. Чтобы приведенный выше способ нахождения равнодействующей плоской системы сил иметь возможность использовать и тогда, когда точка пересечения двух слагаемых в частичную равнодействующую сил лежит вне чертежа (например при параллельных силах), прибегают к примененному выше положению, что две равные по величине, но противоположно направленные по одной и той же прямой силы могут быть произвольно прилагаемы, и тем самым статическое значение плоской системы сил не изменится. На этом и основано применение веревочных многоугольников.  [c.237]

В первом томе рассматриваются следующие разделы статики и кинематики система сходяптихся сил, произвольная плоская система сил, равновесие тел при наличии трения скольжения и трения качения, графическая статика, пространственная система сил, центр тяжести движение точки, поступательное движение и вращение твердого тела вокруг неподвижной оси, сложное движение точки, плоское движение твердого тела, вращение твердого тела вокруг неподвижной точки, общий случай движения твердого тела, сложение вращений твердого тела вокруг параллельных и пересекающихся осей, сложение поступательного и вращательного движений твердого тела.  [c.2]

Второй характерной особенностью метода является общность законов для плоских и пространственных сил. В последнем случае пространственная система сил (векторов) редуцируется к плоскости, облегчая изучение пространственных объектов в геометрии, статике и кинематике. Последнее следует из того, что законы сложения сил указывают на те соотношения, которые существуют между сторонами и углами образованных ими фигур равновесия, а следовательно, и на геометрические свойства плоскости и пространства. В первой части мы рассматриваем основные операции с параллельными и пересекающимися векторами указываем на приложение метода для определения центров тяжести различных конструкций и механизмов к бесполюсному интегрированию и дифференцированию и т. п. Метод весовой линии применим также к расчету стержневых конструкций, многоопорных осей и валов и т. д.  [c.6]


Рассматриваются следующие разданы статики и кииематики система сходящихся сип, произвольная плоская система сил, равноАесне тел при наличии /трения скольжения и трония качения, графическая статика, пространствеМная система сил, движение точки, поступательное движение и вращение твердого тела вокруг неподвижной оси и неподвижной точки, общий случай движения твердого тела, сложение вращений твердого Тела вокруг параллельных и пересекающихся осей, сложение поступательного и вращательного движений твердого тела, Краткие сведения из теории даются в конспективной форме.  [c.2]

Однако нужно сказать, что этот способ мало удобен, во-первых, потому, что при значительном числе слагаемых сил он становится громоздким, и, во-вторых, потому, что точка пересечения линий действия двух слагаемых сил может оказаться настолько удаленной, что не будет помещаться на чертеже. Поэтому мы рассмотрим другой способ приведения плоской системы сил, более простой и более обшдй этот способ применим, как увидим далее, также в самом общем случае, когда последовательное сложение сил становится невозможным, так как линии действия данных сил не будут лежать в одной плоскости и потому могут не пересекаться и в то же время не быть параллельными. Этот второй способ называется приведением системы сил к данному центру (к данной точке) и основан на следующей простой теореме.  [c.100]

Еслл все силы, действующие на тело, лежат в одной плоскости, то такая система сил называется плоской. Представим себе произвольную плоскую систему сил F , F ,. .., F , т. е. систему сил, как угодно располол<енны.ч на плоскости. Перенося силы f i и F., в точку пересечения их линий действия и складывая их по ] равилу параллелограмма, получим равнодействующую Й12 = F - -+ F . Если силы F, и F параллелЕлш, то их равнодействующая найдется по правилу сложения параллельных (или аитипарал-лельных) сил. Складывая таким же путем Нц с силой F3, напрем их равнодействующую R123 и т. д. Следует оговорить случай, когда слагаемые силы образуют пару. Мы можем тогда сложить все выделенные пары по правилу п. 2.4 гл. II.  [c.57]


Смотреть главы в:

Руководство к решению задач по теоретической механике  -> Сложение плоской системы параллельных сил

Руководство и решение задач по теоретической механике Издание 2, переработанное  -> Сложение плоской системы параллельных сил



ПОИСК



Плоская система параллельных сил

Система сил параллельных

Система сил, плоская

Сложение пар сил

Сложение параллельных сил

Сложение системы параллельных сил

Сложение системы сил



© 2025 Mash-xxl.info Реклама на сайте