Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Различные формы основного уравнения динамики точки

Различные формы основного уравнения динамики точки  [c.18]

После краткого рассмотрения систем дифференциальных уравнений движения материальной точки в различных формах остановимся на изучении двух основных задач динамики точки.  [c.321]

Дифференциальное уравнение в векторной форме, естественно, эквивалентно трем скалярным уравнениям. В зависимости от выбора осей координат, на которые проектируется основное уравнение динамики (1.1), можио получить различные формы скалярных дифференциальных уравнений движения материальной точки.  [c.244]


Форма, которую Лагранж придал дифференциальным уравнениям динамики, до сего времени служила только для того, чтобы с изяществом выполнять различные преобразования, для которых пригодны эти уравнения, и для того, чтобы с легкостью и притом во всей их широте выводить общие законы механики. Однако из этой же формы можно извлечь важную выгоду с точки зрения самого интегрирования этих уравнений, что, как мне кажется, добавляет новую ветвь к аналитической механике. Я наметил ее основные черты в сообщении, сделанном 29 истекшего ноября Берлинской академии, после того, как имел честь представить Вашей прославленной академии, приблизительно год назад, пример, способный дать почувствовать дух и полезность нового метода. Я нашел, что всякий раз, когда имеет место принцип наименьшего действия, можно следовать по такому пути в интегрировании дифференциальных уравнений движения, что каждый из интегралов, найденных последовательно, понижает порядок этих уравнений на две единицы, если отождествлять постоянно порядок системы обыкновенных дифференциальных уравнений с числом произвольных постоянных, которое вводит их полное интегрирование. Высказанное предложение имеет место также и в случаях, когда функция, производные которой дают составляющие сил, действующих на различные материальные точки, содержит явно время. Мы находим, например, в случае одной точки, вынужденной оставаться на заданной поверхности и подверженной действию только центральных сил, что дифференциальное уравнение второго порядка, которым определяется это движение, приводится к квадратурам, как только найден один-единственный интеграл. Наикратчайшие линии на поверхности входят в этот случай.  [c.289]

I. Исторические замечания. Уравнения движения механических систем можно получать исходя из весьма различных положений, которые могут рассматриваться, как основные принципы механики. Эти принципы должны полностью характеризовать движение системы материальных точек и быть эквивалентными всей системе дифференциальных уравнений движения. Все законы механики системы материальных точек, на которую наложены идеальные связи, могут быть получены из принципа Даламбера — Лагранжа (общего уравнения динамики). Тем не менее представляет интерес преобразовать общее уравнение динамики так, чтобы получить новую форму, эквивалентную этому уравнению, но отличную от него по структуре. Новые формы либо допускают некоторые обобщения, выходящие за рамки чисто механических задач, либо дают возможность получить новые формы дифференциальных уравнений движения. С теоретической точки зрения новые формы в некоторых случаях позволяют обнаруживать некоторые общие свойства системы, которые не всегда очевидны в первоначальной формулировке принципа. Полученный новый принцип может быть принят за основной закон, и из него можно вывести все свойства движения, если только он правильно отображает природу.  [c.500]


Как до сих пор в основном развивались исследования по диссипативным структурам Шли по пути как увеличения числа уравнений типа реакция — диффузия , так и по пути все более усложненного (более нелинейного ) описания локальных взаимодействий. Форма областей же, в которых искались диссипативные структуры, оставались простыми и примитивными (на плоскости -- прямоугольник, круг). Но в окружающей нас природе эти формы встречаются крайне редко. Достаточно взглянуть на карты ареалов распространения различных видов (или популяций) растений или животных — до чего же причудливыми бывают их границы. Или излюбленный процесс ученых, занимающихся диссипативными структурами - морфогенез. Ведь только лишь на самых первых стадиях развивающийся организм имеет простую форму, затем формы резко усложняются. Заметим, кстати, что основное топологическое свойство простых форм, используемых в теории (круга, прямоугольника) — выпуклость, очень редко присуще реальным формам живой природы (будь то ареал обитания или развивающийся организм). С другой стороны, в 3 было показано, что даже простая система, динамика которой описывается одним уравнением, но в сложной области, где нарушено условие выпуклости, порождает диссипативную структуру. Заметим, что та же самая система, но помещенная в простую область диссипативной структуры, не порождает.  [c.190]

Вынесенное в заголовок название специального класса математических моделей газовой динамики означает, что в таких моделях делаются дополнительные предположения о характере термодинамического процесса в газе. В простейшей форме они сводятся к условию постоянства в рассматриваемом движении какой-либо из термодинамических величин. Эти предположения в действительности обычно выполняются приближенно, в зависимости от конкретных условий движения газа. Использование таких предположений на практике требует каждый раз тщательного анализа и экспериментального подтверждения. Привлекательной стороной применения различных термодинамических моделей является то, что в них обычно достигается определенное упрощение описания движения газа и облегчается получение результирующих аналитических формул и выполнение численных расчетов. Здесь в сжатой форме рассматриваются некоторые из таких моделей с целью показать основные особенности в получаемых уравнениях движения газа.  [c.84]


Смотреть страницы где упоминается термин Различные формы основного уравнения динамики точки : [c.548]   
Смотреть главы в:

Курс теоретической механики. Т.2  -> Различные формы основного уравнения динамики точки



ПОИСК



70 - Уравнение динамики

ДИНАМИКА Динамика точки

Динамика основное уравнение

Динамика точки

Основное уравнение динамики

Основное уравнение динамики точки

Основные Динамика

Точка основная

Уравнение основное

Уравнение точки

Уравнения основные

Уравнения форме

Форма уравнением в форме



© 2025 Mash-xxl.info Реклама на сайте