Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

СКОРОСТЬ СВЕТА Скорость света и методы ее определения

СКОРОСТЬ СВЕТА И МЕТОДЫ ЕЕ ОПРЕДЕЛЕНИЯ  [c.417]

ГЛ. XX. СКОРОСТЬ СВЕТА И МЕТОДЫ ЕЕ ОПРЕДЕЛЕНИЯ  [c.419]

В середине XIX в. были также накоплены сведения об электро динамической постоянной, фигурирующей при переходе от электрических к магнитным единицам. Она имеет размерность скорости и по значению очень близка к скорости света в вакууме. Наилучшие измерения, проведенные электромагнитными методами, приводили к значению (299 770 30) 10 см/с. Имеются данные, что столь хорошее совпадение этих констант, казавшееся в те времена случайным, стимулировало исследования Максвелла по созданию единой теории распространения электромагнитных волн. После появления этой фундаментальной теории уже не могло быть сомнений в том, что скорость света в вакууме и электродинамическая постоянная — это одна и та же константа, а совпадение результатов измерений ее значения, выполненных различными методами, является доказательством универсальности теории Максвелла, справедливой для любых электромагнитных волн. Ниже будет охарактеризован современный способ прецизионного определения скорости света в вакууме.  [c.46]


Б наших рассуждениях мы исходим из того, что на опыте обычно измеряется групповая скорость U. Это действительно так практически все приемники света реагируют на усредненное значение квадрата напряженности электрического поля <Е >. Более того, детальный анализ любого эксперимента по определению скорости электромагнитных волн показывает, что в опыте тем или иным способом образуется импульс света, который затем регистрируется. Наиболее ясно это выявляется при изучении различных способов, основанных на прерывании света (метод Физо, Майкельсона и т. д.). Следует также указать, что все радиолокационные установки в диапазоне УКВ работают на принципе эхо , регистрируя отраженный сигнал и измеряя т = 2R/U, где R — расстояние до исследуемого объекта. Так как в воздухе t/ = ц = с, то Я = сх/2. Многократная проверка правильности показаний локаторов и свидетельствует о том, что в этом случае U = с.  [c.50]

Рэлей показал, что в известных методах определения скорости света мы, по самой суш,ности методики, имеем дело не с непрерывно длящейся волной, а разбиваем ее на малые отрезки. Зубчатое колесо и другие прерыватели в методе прерываний дают ослабляющееся и нарастающее световое возбуждение (см. рис. 1.9), т. е. группу волн. Аналогично происходит дело и в методе Рёмера, где свет прерывается периодическими затемнениями. В методе вращающегося зеркала свет также перестает достигать наблюдателя при достаточном повороте зеркала. Во всех этих случаях мы в диспергирующей среде измеряем групповую скорость, а не фазовую.  [c.431]

А. М. Бонч-Бруевич (1956 г.), применив для определения скорости света современные уточненные методы, сравнил скорости света, идущего от правого и левого краев Солнца, т. е. от источников, один из которых приближается, а другой отдаляется от нас со скоростью 2,3 км/с. Опыты с достаточной степенью точности  [c.452]

В теории Зельмейера оказалось возможным связать оптическую константу (скорость света в веществе) с другими параметрами ве- щества, с собственными периодами колебаний его молекул, определение которых, правда, должно было выполняться такл<е оптическими методами. Электронное истолкование дисперсии с использованием понятия собственных колебаний атомов установило природу колеблющихся частиц (электроны и ионы) и позволило значительно углубить наши представления о веществе и свете.  [c.548]

Рне. 2. Определение скорости света методой вращекпцегосн зеркала (методом Фуко) В —источник света я — быстровра-щающееся зеркало С — неподвижное вогнутое зеркало, центр которого совпадает с осью вращения Л (поэтому свет, отражённый С, всегда попадает обратно на П) М — полупрозрачное зеркало L — объектив Е — окуляр R — точно намеренное расстояние (база). Пунктиром показаны положение Л, изменившееся за время прохождения светом пути В (7 и обратно, и обратный ход пучка лучей через объектив L, который собирает отражённый пучок в точке S, а не вновь в точке 8, как то было бы при неподвижиом зеркале Л. Скорость света устанавливают, измеряя смещение SS.  [c.549]


Рассмотрим пример определения массы планеты на основании данных сопровождения зонда в окрестности точки встречи с планетой. Масса планеты измеряется в единицах массы Солнца. Однако измерения дальности или интегрируемого допплерова сдвига частоты выражаются через скорость света с в единицах длины и времени (в астрономических единицах и секундах соответственно). До тех пор, пока получаемая информация связана с той областью, где планета в основном определяет движение зонда, почти невозможно отделить влияние точности знания массы от влияния точности знания скорости света. Следовательно, если масса будет входить наравне со скоростью света с а. е.1сек) в решение, полученное классическим методом наименьших квадратов, то матрица A WA будет слабо определенной. Даже в том случае, когда располагаемая точность вычислений позволит обратить эту матрицу, полученные поправки к значениям массы и скорости света окажутся настолько сильно коррелированными, что решение будет практически бесполезным. Однако величина с известна достаточно точно из результатов радиолокации планет и других экспериментов вне области встречи зонда с планетой ).  [c.113]

Результаты эксперимента. На рис. 10.5 приведены результаты измерения тепловых потоков, возникающих при разложении образцов твердого БАДЕ при различных скоростях нагревания (масса образца m яв 0,5 мг). На каждой кривой наблюдаются четыре пика. Два из них отражают эндотермический тепловой эффект и не меняют своего температурного положения (111 и 120 °С) с изменением скорости нагревания образца, т.е. обусловлены фазовыми переходами. Два других гораздо больших пика соответствуют экзотермическому тепловому эффекту. Площадь под пиками (теплота) и температура максимума существенно зависят от скорости нагревания. Это свидетельствует о том, что происхождение наблюдаемых пиков связано с процессом термоактивированного разложения. На первый взгляд может показаться, что разложение исследуемого вещества протекает в две стадии, различающиеся кинетическими параметрами (энергией активации и частотным фактором). Но в этом случае невозможно интерпретировать площади двух пиков (т.е. теплоту), высота которых меняется при изменении скорости нагревания. Следует также учесть тот факт, что оптические методы исследования дают только один пик излучения света. Удовлетворительное объяснение наблюдаемого эффекта бьшо дано на основе определения температуры плавления вещества (164°С). Двойной пик возникает в результате изменения теплопроводности и коэффициента теплопередачи между образцом и чашкой для образца в результате образования расплава исследуемого вещества. Улучшение теплового контакта исследуемого вещества с калориметром уменьшает возможность перегревания образца. В результате снижается скорость реакции и, соответственно, тепловой поток. Из рис.  [c.160]

В 1915—1916 гг. Годдард впервые провел экспериментальные исследования со стальными камерами порохового ракетного двигателя с целью определения их КПД и скорости истечения. После завершения этих экспериментов Годдард создал окончательный вариант своей монографии, опубликованной Смитсонианским институтом в Вашингтоне в 1919 г. (вышла в свет в 1920 г.) [14]. Однако в этой публикации все вопросы теоретической космонавтики (как и применения жидкостных ракет) отошли на второй план. В том же 1920 г. Годдард представил в Смитеонианский институт доклад О дальнейшей разработке ракетного метода исследования космического пространства (опубликован в 1970 г. [6, с. 413—430]), в котором рассмотрены вопросы применения кислородно-водородного топлива, получения ионизированной реактивной струи, создания солнечнозеркальной энергетической установки и др. Начиная с 1917 г. Годдард занимался конструированием твердотопливной многозарядной (с магазином патронов) ракеты, рассматривая ее поначалу как прототип высотной космической ракеты.  [c.442]

По теории эффекта Комптона одновременно с рассеянием кванта должно иметь место и отбрасывание электрона со скоростью v (электрон отдачи). Действительно такие электроны удалось наблюдать по методу камеры Вильсона, так как скорость этих электронов достаточна, чтобы вызвать ионизацию воздуха. Комптон и Саймон (1925 г.), пользуясь этим методом, изучили распределение направлений первичных и рассеянных квантов и электронов отдачи. Результаты оказались в полном согласии с приведенной теорией столкновения, расхождение между опытным и теоретическим определением направления полета электрона лежало в пределах О—20 , что следует считать весьма удовлетворительным для этого трудного опыта. Описанный опыт, так же как и специальный опыт Боте (1925 г.) показали, что акт рассеяния и акт электронной отдачи локализованы и в пространстве и во времени, как два совпадающих акта, что заставляет признать описываемый процесс элементарным, а не статистическим. На основании этих уже опытных данных следует считать неудовлетворительным классическое истолкование изменения длины волны при рассеянии, как результат явления Допплера, т. е. рассеяние электронами, приведенными в достаточно быстрое движение. Наоборот, с данными опыта вполне согласуется развитая квантовой механикой теория рассеяния рентгеновских лучей свободными электронами. Она не только подтверждает выводы, полученные при помощи упрощенного рассмотрения явлений на основании гипотезы световых квантов, но и приводит к количественным заключениям относительно интенсивности рассеянного света (Дирак, 1926 г., и Клейн и Ниши-на, 1929 г., применившие новую релятивистскую квантовую механику Дирака). Установленная этими теориями зависимость коэфициента рассеяния от направления наблюдения и длины волны хорошо подтверждается измерениями в весьма широком HHTepBajfe частот, вплоть до очень жестких у-лучей. В области наиболее коротких волн (см. Носмические лучи) формула Дирака-Клейн—Нишина дает пока единственно применимый, хотя и не вполне надежный, метод определения длины волны (Милликен, 1927 г.).  [c.71]



Смотреть страницы где упоминается термин СКОРОСТЬ СВЕТА Скорость света и методы ее определения : [c.287]    [c.323]    [c.415]    [c.242]    [c.247]    [c.54]    [c.127]    [c.129]    [c.180]    [c.316]    [c.116]    [c.172]   
Смотреть главы в:

Оптика  -> СКОРОСТЬ СВЕТА Скорость света и методы ее определения



ПОИСК



Лабораторные методы определения скорости света

Методы определения скорости света

Методы определения скорости света

Скорость Определение

Скорость света



© 2025 Mash-xxl.info Реклама на сайте