Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Введение в природу разрушения

ВВЕДЕНИЕ В ПРИРОДУ РАЗРУШЕНИЯ  [c.18]

Анализ физической природы энергетического барьера Uo показал [361, что эта величина согласуется не только с энергией сублимации, но и с энергией самодиффузии с помош,ью меж-узельных атомов, а также с энергией пересечения расщепленных дислокаций, не вступающих в реакцию. Следует отметить, что представления, введенные в работе [367], недостаточно учитывают структурное состояние вещества. С таких позиций трудно объяснить влияние малых добавок на ползучесть и разрушение. Вряд ли они влияют на основные параметры уравнения.  [c.390]


Стойки шасси ВС имеют разнообразные конструктивные элементы, разрушение каждого из которых может приводить к серьезным последствиям в процессе выпуска или уборки шасси, совершения посадки и руления. В зависимости от зоны расположения детали, вида ВС и условий нагружения элемента конструкции усталостные трещины могут возникать на разных стадиях эксплуатации, и период развития треш ины может существенно различаться не только количественно, но сама природа развития трещин может соответствовать разным процессам разрушения. В связи с этим представляет интерес оценка и сопоставление между собой процесса распространения трещин в одноименных деталях, но по разным сечениям (зонам), а также по разным элементам конструкций, но в одной зоне узла. Применительно к разным типам ВС и зонам стоек шасси повреждения деталей могут происходить за полетный цикл нагружения на разных этапах полета — в процессе руления, на разворотах или при уборке или выпуске шасси. В результате этого накопление повреждений в детали происходит в разных зонах с различной длительностью для стадии зарождения и периода роста трещины, что приводит к необходимости введения дифференцированной периодичности осмотров детали для разных ее зон.  [c.773]

Кремний повышает стойкость к растрескиванию и уменьшает потери пластичности, если его концентрация достаточно велика [66, 67, 69, 83, 87, 90]. Эффект кремния особенно заметен при концентрациях свыше 4%, причем, по некоторым данным, при этом подавляется как зарождение, так и распространение трещин [91]. Однако такие высокие концентрации кремния стабилизируют б-феррит в микроструктуре стали, поэтому не исключено, что этот эффект в основном обусловлен изменением микроструктуры, а не состава. Как растворенная примесь в аустените кремний несколько снижает значение ЭДУ [77], и, следовательно, служит примером того, что уменьшение ЭДУ не обязательно приводит к усилению растрескивания или других форм разрушения. Правда, уменьшение ЭДУ при введении малых добавок кремния невелико и может быть просто недостаточным, чтобы вызвать заметный эффект [68]. В пользу последнего предположения свидетельствует то, что при концентрациях 0,8—1,5% кремний (слабо влияющий в этом случае на б-феррит и присутствующий, следовательно, в аустените) не изменяет поведение сплава при КР [69, 82, 92]. Предполагается, что в водных растворах влияние кремния имеет электрохимическую природу [66], однако и в этом случае исследования микроструктуры были бы очень полезны. Испытания в газообразном водороде также могли бы дать интересную информацию.  [c.72]


В патенте № 2 068 540 с приоритетом от 27.02.92 г. для разрушения атмосферных вихревых образований (смерчей, торнадо), а также для их профилактики предложен способ, включающий формирование энергетического импульса подрывом заряда в верхней части вихревого столба, при котором энергетический импульс формируют в направлении от верхней к нижней части вихревого столба. В качестве устройства для реализации указанного способа предлагается использовать метеорологический авиационный боеприпас, содержащий корпус, в котором размещен заряд взрывчатого вещества и взрыватель. В корпус боеприпаса введен наполнитель в виде металлических порошка и опилок, размещенный в головной части корпуса, а заряд выполнен цилиндрической формы с удлинением 1,2-1,6 и снабжен системой многоточечного инициирования с обеспечением направленного от донной к головной части заряда взрыва, при этом коэффициент наполнения боеприпаса составляет 0,65-0,80. Тем самым предотвращается ущерб, наносимый народному хозяйству подобными атмосферными явлениями природы.  [c.264]

При любом фpaкtoгpaфичe кoм исследовании, тем более при изучении причин эксплуатационного разрушения, целесообразно, а в ряде случаев совершенно необходимо параллельно изучить структуру материала. При этом важно знать природу различных металлургических и прочих технологических дефектов, а также их влияние на прочность, сопротивление возникновению и развитию разрушения анализируемых материалов. Существенным в анализе разрушения является знание того, каким образом меняется характер разрушения данного материала при изменении технологии изготовления, например при введении упрочняющих видов обработки, при отпуске в различных температурных интервалах, перегревах при штамповке и т. д.  [c.183]

Кризис теплообмена является следствием различных по своей природе физических процессов [I, 2]. Придерживаясь введенной в Гз] терминологии, определим кризис теплообмена первого рода, как процесс ухудшения температурного режима парогенерирующей поверхности, причиной возникновения которого является разрушение пристенного жидкостного слоя под воздействием любых тепло-гидравлических факторов. Такой подход к этому явлению расширяет область действия кризиса первого рода до паросодд)жаний, близких к единице, что позволяет ограничить величину максимально возможной удельной тепловой нагрузки при кризисе теплообмена второго рода в коротких трубах.  [c.269]

Многоуровневый и иерархический характер разрушения предопределяет его мультифрактальную природу. Это делает необходимым введение функции самоподобия разрушения на всех уровнях с определением размерности самоподобия разрушения. В качестве такой функции ранее [11, 282] была использована функция позволяющая делать итерационные переходы, так как при /и —> Д " —> 1. С ее помощью при т, изменяющемся по закону геометрической прогрессии, легко отыскиваются значения каждого последующего уровня промежуточной асимптотики при одном известном параметре из спектра параметров, определяемых функцией А /" (независимо от абсолютных величин изучаемых параметров). Важнейшей особенностью этой функции является соответствие значения при т = 2 золотому отношению Ар, а при т= I — значению  [c.172]

Существенное влияние на старение оказывают компоненты лакокрасочного состава — пигменты, пластификаторы и другие добавки. Разрушение покрытий замедляется при наличии пигментов, обладающих отражательными свойствами или выполняющих функции термостабилизаторов, напротив, оно ускоряется, когда пигменты служат катализатораьи1 или инициаторами химических процессов. Так, введение в состав перхлорвиниловых и хлор-каучуковых покрытий свинцовых пигментов заметно повышает их термостойкость, тогда как железоокисные пигменты и окись цинка ускоряют разложение. Особенно благоприятно влияют на термостойкость самых разных покрытий пигменты с чешуйчатой формой частиц — алюминиевая пудра, бронзы, слюда, графит. Введение алюминиевой пудры в алкидные и масляно-битумные покрытия увеличивает их термостойкость более чем на 100 "С. Белые, отражающие тепловые лучи покрытия также медленнее стареют при нагревании, чем аналогичные цветные покрытия. Присутствие пластификаторов и остаточных растворителей в пленке нередко может вызвать усиление деструкции. Замечено, что диалкилфталаты ускоряют разложение поливинилхлорида, поскольку легче него генерируют радикалы при нагревании. Перхлорвиниловые покрытия, полученные из хлорбензольных растворов, оказываются менее термостойкими, чем такие же покрытия, изготовленные из растворов в ксилоле или ацетоне. На термостойкость покрытий влияет природа подложки, однако это влияние носит избирательный характер в зависимости от материала покрытия разложение может ускоряться, замедляться или сохранять скорость разложения свободной пленки.  [c.175]


Стекло является изолятором электрического тока, хотя некоторая проводимость и возможна благодаря диффузии ионов (например, ионов натрия). Проводимость быстро увеличивается с ростом температуры. Диэлектрическая постоянная стекла зависит от природы модификатора. Например, введение оксида свинца в стекло повышает это значение с 4 до 10. Большое влияние на аксплуатационную долговечность оказывает термостойкость стекол. Термостойкость определяется разностью температур, которую стекло может выдержать без разрушения при его резком охлажцении в воде (0°С). Для большинства видов стекол термостойкость колеблется от 90 до 170 0, а для кварцевого стекла она составляет 800-1000 С.  [c.14]

Таким образом, с точки зрения прочности, в металлах при силовом воздействии после достижения значения 05 на микроуровне имеют место два взаимообусловленных процесса разрыв и восстановление межатомных связей и взаимное перемещение структурных элементов. Вследствие этих процессов на макроуровне в металле возникают пластические деформации, сопровождаемые ростом внешних сил, что характеризуется термином упрочнение . Именно величина этих сил и является той количественной характеристикой, которая вводится как показатель повреждения (2), (5). На микроуровне термин повреждение характеризует перераспределение межатомных сил между движущимися структурными элементами металла, в процессе которого идет нарастание хаоса . При этом количество связей между атомами уменьшается с одновременным ростом энергии оставшихся связей за счет увеличения расстояния между ними [2]. Важным следствием этого процесса является возникновение структурных завалов -преград, возникающих на площадках действия касательных напряжений, которые увеличивают сопротивления металла сдвиху за счет уменьшения его сопротивления отрыву. Опыты показывают, что структурные изменения - пластические деформации однозначно связаны с повреждениями межатомных взаимодействий только на участках упрочнения на площадках текучести и в областях больших деформаций, характеризуемых горизонтальными участками диаграмм растяжения, эта связь является слабой или полностью отсутствует (имеет место, например, явление сверхтекучести). Неопределенность деформационных процессов позволяет, с одной стороны, широко использовать их в технологии, решая вопросы геометрии изделий, но с другой - не позволяет считать деформации мерой разрушения. Отсюда следует, что фундаментальным физическим фактором, ответственным за разрушение, следует считать силы межатомных связей, которые по своей природе могут быть приняты в качестве универсального критерия разрущения. Именно эти силы и определяют физический смысл введенных физикомеханических показателей повреждений р и К, которые с помощью линейного преобразования связывают два физических явления -  [c.31]


Смотреть страницы где упоминается термин Введение в природу разрушения : [c.125]    [c.36]    [c.76]   
Смотреть главы в:

Физическая природа разрушения 1997  -> Введение в природу разрушения

Физическая природа разрушения  -> Введение в природу разрушения



ПОИСК



Введение

Природа



© 2025 Mash-xxl.info Реклама на сайте