Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задание С.8. Определение положения центра тяжести тела

ЦЕНТР ТЯЖЕСТИ Задание С.8. Определение положения центра тяжести тела  [c.45]

Общие положения. В предыдущих примерах было рассмотрено движение твердых тел, точки которых могли перемещаться только параллельно неподвижной плоскости. Рассмотрим теперь такое же движение в общем виде. Возьмем, например, цилиндр, лежащий своим основанием на неподвижной плоскости каждая точка тела будет тогда описывать траекторию, лежащую в неподвижной плоскости, параллельной заданной неподвижной плоскости. В частности, если через центр тяжести в его начальном положении провести плоскость хОу, параллельную неподвижной плоскости, то центр. тяжести будет оставаться в этой плоскости. То же самое будет для всех точек тела, лежащих в начальный момент в этой плоскости. Рассмотрим сечение 5 тела плоскостью хОу. Для определения положения тела достаточно, очевидно, знать положение этого сечения 5, т. е. координаты и т] центра тяжести О  [c.93]


Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]


Пример 2. РЕГУЛЯРНАЯ ПРЕЦЕССИЯ ТЯЖЕЛОГО СИММЕТРИЧНОГО ГИРОСКОПА. Симметричным гироскопом называется тело, обладающее полной материальной симметрией относительно некоторой оси, закрепленной в неподвижной точке1>, и вращающееся вокруг этой оси с очень большой угловой скоростью Гироскоп называется тяжелым, если центр тяжести его не совпадает с неподвижной точкой (см. рис. 3, где О — неподвижная точка, С — центр тяжести, I — расстояние ОС). Для определения положения гироскопа выбираем неподвижную точку О за начало двух систем координат — неподвижной Oл г/Jг и подвижной, неизменно связанной с гироскопом, Охуг. Оси последней системы пусть будут главными осями инерции гироскопа для точки О. Ось Ог — ось симметрии гироскопа. Положение гироскопа будет однозначно определено заданием трех углов (утлы Эйлера)  [c.33]


Смотреть страницы где упоминается термин Задание С.8. Определение положения центра тяжести тела : [c.50]   
Смотреть главы в:

Сборник заданий для курсовых работ по теоретической механике  -> Задание С.8. Определение положения центра тяжести тела



ПОИСК



8 — Положение — Определение

Задание

Определение положения центра тяжести

Определение центра тяжести

Определение центра тяжести тела

Тяжесть

Центр Положение

Центр определение

Центр тяжести

Центр тяжести Определение центра тяжести

Центр тяжести тела

Центр тяжести — Определени



© 2025 Mash-xxl.info Реклама на сайте