Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение жидкости безвихревое неустановившееся

Отсутствие любого из членов, включающих вязкость, в уравнении энергии для безвихревого установившегося или неустановившегося потока в действительности означает, что в любой области мгновенная скорость диссипации энергии, вызванной вязкостью, точно компенсируется мгновенной скоростью совершения работы вязких сил на границе этой области. В частности, если скорость обтекания безвихревым потоком твердого тела (поверхность которого движется в соответствии с теорией потенциального течения) постоянна, диссипация энергии во всей области потока в точности равна скорости, с которой совершается работа вязкого сдвига по движущейся поверхности твердого тела. Примерами безвихревого движения вязкой жидкости могут служить движение жидкости в неограниченном пространстве, вызванное вращением цилиндра бесконечной длины, и движение между концентрическими цилиндрами, вращающимися с угловыми скоростями, обратно пропорциональными квадратам их радиусов. Это простые вращательные движения, которые могут быть воспроизведены на практике, поскольку скорость, налагаемая твердой границей, постоянна.  [c.200]


В гидродинамике доказывается для весьма широкого класса практически важных движений, что и в случае неустановившегося движения циркуляция по замкнутому контуру постоянна, однако в этом случае рассматривается так называемый жидкий контур, т. е. контур, состоящий из одних и тех же частиц. Последнее утверждение называется теоремой Томпсона. Из этой теоремы следует, что если некоторая масса жидкости в начальный момент времени имела безвихревое движение или покоилась, то и впредь в этой части жидкости не возникает вихрей, о чем уже упоминалась выше (см. также учебник Н. Я. Фабриканта, цитированный выше, в первой сноске).  [c.105]

В предыдущих параграфах этой главы рассмотрены случаи обтекания тел установившимся безвихревым потоком. Полученные результаты решают одновременно и обратную задачу о движении тела с постоянной скоростью в безграничной покоящейся жидкости. Действительно, если требуется изучить закономерности движения тела в жидкости, то согласно принципу относительности Галилея—Ньютона можно всей системе тело—жидкость сообщить скорость,равную по величине и направленную противоположно скорости тела при этом все силы и напряжения в жидкости останутся неизменными. Такое обращение задачи реализуется путем перехода от абсолютной системы координат к системе, связанной с двнл<ущимся телом. Получающееся в этом случае обтекание неподвижного тела изучать удобнее и проще. Однако прием обращения движения не облегчает задачи, если тело движется по криволинейной траектории или с переменной во времени скоростью, т. е. если движение жидкости в системе координат, связанной с телом, будет неустановившимся. Задача обтекания оказывается в этом случае не более простой, чем задача о движе-  [c.317]

После Великой Октябрьской социалистической революции осуществление грандиозного плана электрификации России (плана ГОЭЛРО), разработанного по заданию В. И. Ленина, потребовало решения ряда прикладных задач в области гидравлики, динамики русловых процессов и др. Многие из этих задач были решены Н. И. Павловским, И. И. Агро-скиным, И. И. Леви, Л. Г. Лойцянским, В. М. Маккавеевым, А. Я. Ми-ловичем, М. Д. Чертоусовым, Р. Р. Чугаевым и др. В их работах были предложены оригинальные способы интегрирования дифференциальных уравнений неравномерного движения воды в открытых руслах, разработаны новые методы построения кривых свободной поверхности в естественных руслах, расчета отверстий мостов и труб и решены многие другие сложные проблемы гидравлики. Впервые разработанные С. А. Христиановичем полные решения задачи о неустановившемся движении в открытых руслах на основе применения метода дифференциальных характеристик стали могучим средством инженерной гидравлики. Весьма полно исследовали. и значительно усовершенствовали теорию неустановившегося движения жидкости Н. М. Вернадский и др. Исследования М. В. Келдыша, М. А. Лаврентьева, Л. И. Седова и других ученых в области гидромеханики плоского безвихревого потока позволили заложить теоретические основы построения очертания струенаправляющих дамб и решения других прикладных задач.  [c.9]


Так как движение сообщается неподвижной жидкости, то, когда тело движется через нее, кинетическая энергия всей системы обязательно больше, чем энергия одного тела. Ввиду того, что работа, производящая этот излишек энергии, должна поставляться телом, усилие на тело зависит не только от скорости, но и от ускорения. Таким образом, если временное изменение кинематических соотношений включается в функцию потенциала или тока безвихревого потока, то для определения кинетической энергии жидкости можно использовать форму уравнения Бернулли для неустановившегося двилеения. Кирхгоф упростил эту проблему, доказав, что полное усилие может быть выражено в членах присоединенных масс или приращений действительной массы тела, пропорциональных объему и плотности вовлеченной в дви-леение жидкости коэффициент пропорциональности изменяется с изменением формы тела. Тэйлор увеличил ценность понятия присоединенных масс, выразив их в членах особенностей, порождаемых телом. Наконец, Легалли установил прямое соотношение между силами, действующими на тело, и особенностями. Таким образом, если распределение особенностей задано или установлено одним из методов решения уравнений течения, как это сделано в следующем разделе, тогда силы и моменты могут быть определены непосредственно без нахождения распределения давления.  [c.92]


Смотреть страницы где упоминается термин Движение жидкости безвихревое неустановившееся : [c.92]   
Гидравлика Изд.3 (1975) -- [ c.64 ]



ПОИСК



Движение безвихревое

Движение жидкости безвихревое

Движение жидкости неустановившееся

Движение неустановившееся



© 2025 Mash-xxl.info Реклама на сайте