Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Акустический в поперечно-изотропной среде

Много исследований по распространению волн вдоль заполненных флюидом скважин было предпринято с целью лучшего понимания поведения скважинной акустической аппаратуры при различных условиях. Вначале скважинный инструмент (зонд) идеализировался в виде жесткого цилиндра, а окружающая порода — как изотропная среда. Затем были созданы болер реалистические модели, включающие описание зонда как упругого стержня, учет проницаемости окружающих пород, наличие поперечной изотропии пород, допущение о наличии границ или нарушений, пересекающих скважину. Ряд синтетических сейсмограмм рассчитывались с целью продемонстрировать преимущество новых видов аппаратуры. Несомненно, проведенные теоретические исследования оказали большое влияние на проекты и использование скважинной аппаратуры.  [c.192]


Анизотропия. Как указывалось в гл. 3, осадочные породы часто могут быть адекватно представлены как тонкослоистые. Такие среды в диапазоне длин волн сейсмической разведки ведут себя как поперечно-изотропные. Эта точка зрения часто менее оправдана в отношении коротких длин волн, используемых в акустическом каротаже, но, по крайней мере, некоторые сланцы анизотропны в малом объеме, Некоторая степень анизотропии в породах с нелинейным поведенйем может быть вызвана и нагрузкой вышележащих пород. Ось симметрии в этом случае направлена  [c.199]

Акустооптичеекое взаимодействие в оптических волноводах. В оптич. волповодах, представляющих собой тонкий слой прозрачного материала на поверхности подложки (т. н. планарные волноводы), возникает взаимодействие оптич. волноводных мод с поверхности ными акустическими волнами (ПАВ), обычно рэлеев-скими. В результате появляется свет, распространяющийся вдоль плоскости волновода, но отклонённый от своего первоначального направления. Для эфф. дифракции необходимо, чтобы в н.поскости волновода световые лучи падали на пучок ПАВ под соответствующим брэгговским углом. Поскольку даже в изотропной волноводной системе скорости распространения разных оптич. мод отличны друг от друга, то при разл. углах падения светового пучка возможна как дифракция света без изменения номера моды, аналогичная обычной брэгговской дифракции, так и дифракция, при к-рой падающий и дифрагированный свет принадлежит к разным волноводным модам. В последнем случае законы дифракции аналогичны закономерностям анизотропной дифракции, возникающей при взаимодействии объемных волн в двулуче-преломляющей среде. В волноводных системах распределение как эл.-магн. полей для оптич. моды, так и поля деформации в ПАВ неоднородно в поперечном сечении волновода. Эффективность акустооптич. диф-  [c.49]

Импульсные методы измерения скорости звука позволяют измерять число длин волн, укладывающихся на акустическом пути, а также определять фазовые сдвиги, приобретенные волной при отражении от границ разных частей звукопровода. Поскольку вводимые в образец импульсы являются высокочастотными (1—100 МГц), длина волны существенно меньше поперечных геометрических размеров образца, что можно рассматривать как случай свободного распространения волн в полубесконечной среде (случай нормальной дифракции). Это позволяет достаточно точно рассчитывать поправки на создающееся в образце дифракционное поле плоского излучателя, причем эти поправки не зависят от упругих свойств изотропного материала. Для введения з образец звукового импульса используют обычно кварцевый преобразователь который приклеивают в случае работы на о т р а ж е-н и е к одному из плоскопараллельных торцов образца, а в случае работы на прохождение импульса — к обоим торцам. Радиоимпульс от генератора, работаю1цего на основной частоте преобразователя, возбуждает в пьезопреобразователе упругую волну, передающуюся в образец. С помощью пьезопреобразователя в образце можно возбуждать продольную и поперечную волны.  [c.262]


В зависимости от направления в кристалле скорость звука существенно меняется на 9% для продольных волн на 31% для поперечных волн с вертикальной поляризацией на 16% для поперечных волн с горизонтальной поляризацией. Меняется также коэффициент затухания волн. В результате транскристал-литной структуры изменение акустических свойств наблюдают для всего наплавленного металла шва. Он весь становится анизотропным. Это существенно отличает такой шов от изотропной (в большом объеме) крупнозернистой среды со случайной ориентацией зерен, рассмотренной в п. 2.3.5.  [c.212]

В предлагаемой работе кратко изложены теоретические основы распространения упругих волн в твердых телах, причем больше внимания уделяется вопросам распространения поперечных (сдвиговых) колебаний в анизотропных средах. Даны основы метода акустополяризованных измерений. Объяснена физическая суть эффекта линейной анизотропии поглощения (акустического дихроизма). На основе анализа законов отражения на полупространстве и отражения-прохождения на границе раздела сред рассматриваются пути создания эффективных чисто поперечных линейно-поляризованных излучателей и приемников колебаний. Проанализированы, разработаны и испытаны конструкции комбинированных преобразователей для излучения и приема продольных и сдвиговых колебаний, преобразователей для определения упругих постоянных анизотропных сред. На основе результатов сравнительных испытаний показаны их достоинства и недостатки. Описаны акустополярископы трех модификаций и приемы проведения акустополяризационных измерений. Изложены приемы обработки результатов измерений, определения типа симметрии и констант упругости анизотропных сред. Даны правила для расчета констант, анализа сред ромбической, тетрагональной, псевдогексагональной, кубической и изотропной симметрий. Вместе с этим показано, что по числу выявленных элементов симметрии возможен анализ сред более низких форм симметрии, например, тригональной и др.  [c.12]


Смотреть страницы где упоминается термин Акустический в поперечно-изотропной среде : [c.58]    [c.249]    [c.212]    [c.296]    [c.9]   
Возбуждение и распространение сейсмических волн (1986) -- [ c.199 ]



ПОИСК



Изотропность

Изотропность среды

Среда акустическая

Среда изотропная

Среда поперечно-изотропная



© 2025 Mash-xxl.info Реклама на сайте