Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химическая стойкость высокохромистых сталей

Высокохромистая кислотоупорная сталь марки Ж27 с содержанием хрома до 30% и углерода 0,20% относится к ферритному классу специальных сталей и применяется без термической обработки. Химическая стойкость этой стали более высокая, чем 12- и 18%-ных хромистых сталей. Эта сталь применяется для изготовления аппаратуры, работающей в условиях воздействия горячей фосфорной кислоты с Концентрацией до 70-75 /о и горячей вытяжки фосфорной кислоты из флотированного апатита, а также горячей уксусной кислоты с концентрацией до 50 /о и растворов гипохлорита натрия. Так как эта сталь обладает большой хрупкостью, она не может подвергаться ударным нагрузкам.  [c.241]


При сварке сталей мартенситного, мартенсит-но-ферритного и ферритного классов (высокохромистых сталей) свойства сварных соединений могут быть удовлетворительными, если химический состав металла шва соответствует химическому составу свариваемого металла, а после сварки используется высокий отпуск. При сварке с использованием подогрева и последующей термической обработке применяют присадочный металл из аустенитной или аустенитно-ферритной стали. Использование таких материалов не обеспечивает равнопрочности шва и основного металла, но коррозионная стойкость и жаростойкость шва мало отличаются от соответствующих свойств основного металла.  [c.334]

При введении >12% Сг железо.становится коррозионностойким в атмосферных условиях, поэтому железохромистые сплавы называют нержавеющими. Хром также повышает коррозионную стойкость железных сплавов в ряде других сред, преимущественно окислительных, что, например, широко используется при изготовлении аппаратуры для производства азотной кислоты. Во многих средах нержавеющие хромистые и хромоникелевые стали, а также высокохромистые чугуны показывают высокую коррозионную стойкость. Эти стали и чугуны используются при изготовлении коррозионностойких изделий и химической аппаратуры различного назначения.  [c.483]

Для работы при повышенных температурах часто применяют хромоникелевую сталь типа 18-10. В большинстве случаев это вызвано тем, что она производится в виде листов и отличается хорошей технологичностью (легко подвергается гибке, штамповке, сварке и т. п.), что при изготовлении многочисленной номенклатуры изделий в различных отраслях промышленности является определяющим фактором. Однако эта сталь, обладая хорошей коррозионной стойкостью в различных химически агрессивных средах, слабо противостоит газовой коррозии при 800—850°С и выше. Здесь большое преимущество перед ней имеют высокохромистые стали (25% хрома и более). Но высокохромистые стали отличаются низкой технологичностью, вследствие чего листовая сталь с 25% хрома получила меньшее применение, а с большим содержанием хрома ( 28% Сг) ферритная сталь применяется уже только в литом виде.  [c.114]

Получение химически стойких сплавов. Химически стойкие сплавы получают путем легирования элементами, повышающими их стойкость против коррозии. Такими элементами являются хром, никель, титан, вольфрам и др. В настоящее время отечественная металлургическая промышленность выплавляет нержавеющие, высокохромистые и хромистые стали, специальные чугуны и т. п. Использование специальных сплавов дает возможность обеспечить длительный срок службы изделий и машин в условиях высоких температур и в других интенсивно разрушающих металл средах.  [c.202]


Высокохромистые двухфазные аустенитно-ферритные стали обладают высокой коррозионной стойкостью, коррозионно-усталостной про шостью. хорошими механическими характеристиками. Благодаря высокой стойкости к коррозии под действием кавитации из этих сталей целесообразно изготовлять детали насосов высокой подачи для перекачки морской воды. Двухфазные аустенигно-ферритные нержавеющие стали находят широкое применение в химической и нефтехимической промышленности в качестве коррозионно-стойких конструкционных материалов. Стойкость к коррозии в морской воде этих сталей сравнима со стойкостью аустенитных сталей, т.е. достаточно высока, а сравнивае-мость и обрабатываемость лучше.  [c.20]

Молибден. Введение молибдена в высокохромистую или хромоникелевую сталь способствует повышению общей химической стойкости ее. Присадка молибдена в аустенитную хромоникелевую сталь способствует появлению в ней ферритной фазы. Как ферри-тизатор, молибден в 1,5—4 раза эффективнее хрома. Введенный в хромоникелевую сталь молибден повышает ее твердость и предел прочности. Однако для нержавеющей стали мартенситного класса, содержащей молибден (из-за подверженности ее к высокотемпературной хрупкости), требуется термическая обработка металла как до, так и после резки.  [c.26]

Последствия окисления металла швов при сварке высокохромистых сталей ферритного класса. В последнее время все большее распространение находят 12 %-ные хромистые стали. Высокая коррозионная стойкость к ряду агрессивных и окислительных сред, повышенная механическая прочность, жаропрочность и экономный уровень легирования выводят группу 12—14 %-ных хромистых сталей в весьма перспективные материалы для химической, энергетической и других отраслей промышленности. В результате 12 %-ные хромистые стали являются самыми экономнолегированными коррозионно-стойкими сталями. Вместе с тем широкое их применение в промышленности сдерживается трудностями, возникающими при сварке, в деле обеспечения требуемой пластичности, вязкости и достаточной сопротивляемости образованию холодных трещин.  [c.234]

Сульфоцианирование относится к числу разрабатываемых прогрессивных методов комбинированной химико-термической обработки. Процесс применяется для повышения износо- и задиростойкости деталей, эксплуатирующихся в химически агрессивных средах, а также в условиях интенсивного трения и недостаточной смазки. Сульфоцианирование способствует повышению стойкости режущего инструмента, изготовленного из быстрорежущих или высокохромистых сталей. Кроме того, этот процесс находит применение при решении вопросов повышения износостойкости и сопротивления усталости металла деталей при многократных циклических нагрузках.  [c.373]

Высокая стойкость против коррозии обусловлена образованием на поверхности пассивирзто-щих пленок, обладающих высокими защитными свойствами, высокой степенью однородности и быстротой образования. Помимо хрома повышению коррозионной стойкости способствует введение фосфора. В пленке высокохромистых кристаллических сталей всегда присутствуют микро-поры, которые со временем преобразуются в очаги коррозии. На аморфных сплавах, содержащих определенное количество хрома и фосфора, пассивирующая пленка высокой степени однородности может образоваться даже в 1 н. НС1. Образование однородной пассивирующей пленки обеспечивается химической и структурной однородностью аморфной фазы, лишенной кристаллических дефектов, таких как выделения избыточной фазы, сегрегационные образования и границы зерен.  [c.865]

Заслуживает особого упоминания высокохромистый нержавеющий чугун ( 2,0—2,5 /о С, 1—1,5 /о Si, 0,50/0 Мп, 34-350/0 Сг). Этот сплав обладает высокой стойкостью в азотной кислоте, атмосфере, пресной воде жаростоек, имеет высокие механические свойства и более удобен для изготовления фасонных отливок, чем сталь. Подробнее см. В. В. Скорчеллетти и А. И. Шултин, Химическое разрушение металлов, ОНТИ, 1935, стр. 171. Прам. ред.  [c.36]



Смотреть страницы где упоминается термин Химическая стойкость высокохромистых сталей : [c.8]   
Справочник азотчика том №2 (1969) -- [ c.282 ]



ПОИСК



Сталь высокохромистая

Химическая стойкость



© 2025 Mash-xxl.info Реклама на сайте