Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критическая точка одномерная модель Изинга

Поэтому корреляционная длина становится бесконечной при Н = Г = 0. Мы уже отмечали в разд. 1.7, что критическая точка может быть определена как точка, в которой = оо, так что в этом смысле // = 7=0 — действительно критическая точка одномерной модели Изинга.  [c.45]

Несмотря на чрезвычайную простоту, модель Изинга позволяет продемонстрировать два очень существ, факта для теории фазовых переходов во-первых, одномерные системы имеют критич. точку, в к-рой темп-ра Т и маги, поле Н равны нулю, и, во-вторых, критические показатели физ, величин вблизи критич. точки удовлетворяют гипотезе подобия.  [c.151]


За время, отделяющее решение модели Изинга Онсагером в 1944 г. от решения модели жестких шестиугольников Бакстером в 1980 г., статистическая механика двумерных систем обогатилась значительным числом точных результатов. Принято называть модель точно решаемой, когда для некоторой физической величины, такой как свободная энергия, параметр порядка или корреляционная функция, получено удобное математическое выражение или, по крайней мере, когда удалось свести их вычисление к задаче классического анализа. Такие решения, которые поначалу кажутся иногда каким-то курьезом, часто бы-виют интересны тем, что иллюстрируют общие принципы и теоремы, строго выведенные в рамках определенных теорий, а также позволяют контролировать приближенные методы, применимые к более реалистическим и сложным моделям. В теории фазовых переходов модель Изинга, результаты Онсагера и Янга успешно сыграли такую роль. Методы Либа и Бакстера для разнообразных вершинных моделей развили этот успех и расширили набор известных критических показателей, дав материал для сравнения с методами экстраполяции, и заставив уточнить концепцию универсальности. Тесно связанные с классическими двумерными моделями, хотя и не представляющие интереса для теории критических явлений, квантовые одномерные модели, такие, как магнитная цепочка, и знаменитое решение Бете, несомненно внесли вклад в понимание структуры возбуждений в системах с большим числом степеней свободы. Можно было бы также обратиться к физике одномерных проводников. Все эти вопросы теоретической физики, которые, несомненно, оправдывают исследования точно решаемых моделей, не являются предметом настоящей книги, поскольку их изложение потребовало бы обширных и в то же время глубоких познаний в теоретической физике. Речь будет идти в основном  [c.8]

Свободная энергия модели Изинга определяется наибольшим из двух собств. значений трансфер-матрицы. Однако при Т=Н=а оба собств. значения совпадают, обращая при этом корреляц. длину в бесконечность. Это означает, что в одномерной модели Изинга точка Т=Н=0 является критической точкой. Полученный результат есть следствие общей теоремы теории фазовых переходов, согласно к-рой дальний порядок (см. Дальний и ближний порядок) в системе возникает только тогда, когда наибольшее собств. значение трансфер-матрицы асимптотически вырождено. Такое поведение согласуется также с тем, что для одномерных систем с взаимодействием конечного радиуса вклад в свободную энергию от энтропийного слагаемого преобладает, и упорядоченное состояние оказывается термодинамически неустойчивым. В случае же с бесконечным радиусом взаимодействия собств. значения трансфер-матрицы становятся вырожденными, что соответствует фазовому переходу. Каждый спин системы при этом взаимодействует со всеми остальными спинами, так что вся цепочка представляет собой единый кластер, т. е. модель преобразуется в решётку с бесконечным координац. числом (т. н. бесконечномерная модель), для к-рой точным оказывается среднего поля приближение.  [c.151]


Что касается удельной теплоемкости в постоянном поле, то для нее теория Вейсса также предсказывает конечный скачок. Следовательно, как указывалось выше, все соответствующие друг другу величины ведут себя в окрестности критической точки одинаково в обеих так называемых классических теориях. Это не случайно. Действительно, главная физическая идея, лежащая в основе обеих моделей, заключается в существовании далънодействующих сил. Кац очень изящно показал, что если мы рассмотрим простую решетку с одномерными спинами (модель Изинга, см. разд. 10.2), в которой все спины взаимодействуют одинаково независимо от их взаимного расстояния, то мы получим в точности уравнение состояния Вейсса. Следовательно, теории ВдВ и Вейсса являются, так сказать, изоморфными . Аналогия двух теорий очень ясно проявляется также в теории фазовых переходов Ландау. Ландау исходит из выражения для свободной энергии и разлагает ее в окрестности критической точки делая сходные допущения, при этом можно получить либо теорию ВдВ, либо теорию Вейсса. Из-за недостатка места мы не будем подробно рассматривать здесь теорию Ландау, прекрасное изложение которой можно найти в ряде книг (см., однако, разд. 10.4).  [c.346]

Изинг предложил свою модель в 1925 г. [117] и решил ее для одномерной системы. Это решение приводится в данной главе частично потому, что оно представляет собой по сушеству введение в технику трансфер-матриц, которая будет использоваться ниже, но также вследствие того интереса, который представляет любая простая, точно решаемая модель. Одномерная модель не имеет фазового перехода при какой-либо ненулевой температуре, но, как будет показано ниже, она имеет критическую точку при // = Г = О, в ней могут быть разумным путем введены критические показатели и выполняются гипотеза подобия и связанные с ней соотношения.  [c.40]


Точно решаемые модели в статической механике (1985) -- [ c.45 ]



ПОИСК



Газ одномерный

Изинга

Изинга модель

Критические точки. См, точки критические

Модель одномерная

Одномерная модель Изинга

Точка критическая



© 2025 Mash-xxl.info Реклама на сайте