Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спин-орбитальное взаимодействие и магнитная анизотропия

В результате спин-орбитального взаимодействия в ферромагнетике возникает анизотропия в расположении атомных магнитных моментов относительно осей кристалла. В соответствии с этим в одних направлениях намагничивание проходит при минимальных затратах энергии (направление легкого намагничивания), в других намагничивание затруднено (направления трудного намагничивания). Этот вид магнитной анизотропии называется магнитной кристаллографической анизотропией. Энергия кристаллографической анизотропии для кубических кристаллов описывается выражением  [c.314]


Параметр спин-орбитального взаимодействия может быть вычислен при рассмотрении вклада от ионов Со + в магнитную кристаллографическую анизотропию данных ферритов.  [c.199]

Обменное взаимодействие играет основную роль в относительной ориентации спинов, но не определяет направления суммарного спина относительно кристаллографических осей кристалла. Это вырождение по направлениям частично снимается спин-орбитальным взаимодействием. Орбитальное движение электронов связано с кристаллографическими направлениями в кристалле и приводит к появлению аффективного магнитного поля — поля анизотропии (<- 10 —10 э). В результате в кристалле появляется одно или несколько направлений легкого намагничения, вдоль которых преимуш,ественно ориентируется суммарный спин электронов. Энергия взаимодействия магнитного момента спина с полем анизотропии по порядку величины равна энергии спин-спинового взаимодействия, т. е. lO " —10 эрг.  [c.104]

Физическую природу магнитной анизотропии впервые установил Н. С. Акулов. В ферромагнитном кристалле имеются взаимодействия, которые ориентируют намагниченности вдоль определенных кристаллографических направлений (осей легкого намагничения). К этому приводит перекрытие электронных орбит спиновые моменты взаимодействуют с орбитальными из-за наличия спин-орбитальной связи, а орбитальные моменты, в свою очередь, взаимодействуют с кристаллической решеткой за счет существующих в ней электростатических полей и перекрытия волновых функций соседних атомов.  [c.347]

Одна из причин магнитной анизотропии ) иллюстрируется схемой на рис. 16.34. Намагниченность кристалла чувствует кристаллическую решетку благодаря перекрытию электронных орбит спиновые моменты. взаимодействуют с орбитальными из-за наличия спин-орбитальной связи, а орбитальные моменты  [c.581]

Наконец, в однородном изотропном аморфном сплаве должна отсутствовать макроскопическая магнитная анизотропия. Однако за счет спин-орбитальных взаимодействий и различного типа неоднородностей в аморфных магнетиках все же возникает случайная анизотропия. Нередко она оказывается слабой, и в этоА1 случае низкие значения магнитной анизотропии приводят к легкости перемагничивания аморфных сплавов. В связи с этим многие аморфные магнетики относятся к классу обладающих особой мякостью магнитно-мягких материалов. Так, типичные коэрцитивные силы этих материалов 0,01—0,2 Э, что значительно меньше соответствующих значений для кристаллических сплавов, причем магнитное насыщение достигается в полях —200 Э. Петля гистерезиса мала и имеет прямоугольную форму, вытянутую вдоль оси  [c.290]


Для ферромагнетиков группы железа орбитальные моменты Зй-электронов жестко связаны ( заморожены ) электростатическим полем решетки и внешнее поле Я, взаимодействуя со спиновыми моментами, преодолевает спин-орбитальное взаимодействие. Таким образом, магнитокристаллическая анизотропия Зй-пере-ходных металлов обусловлена силами магнитного происхождения.  [c.23]

Рпс. 16.34. Асимметрия перекрытия электронных оболочек соседних ионов как одна из причин кристаллографической магнитной анизотропии. Вследствио спин-орбитального взаимодействия распределение электронного заряда — не сферическое. Асимметрия связана с направлением спина, поскольку изменение направления спина по отнопаению к осям кристалла изменяет обменную энергию, а также электростатическую энергию взаимодействия распределений заряда пар атомов. Именно эти эффекты приводят к появлению энергии анизотропии. Энергия системы а иная, чем энергия системы 6.  [c.582]

Возможны и более сложные типы анизотропии, в частности анизотропия типа легкая плоскость . В последнем случае направления легкого намагничивания образуют плоскость, расположенную перпендикулярно к оси анизотропии. Другим типом взаимодействия, который также играет важную роль в формировании магнитокристаллической анизотропии, является спин-орбитальное взаимодействие, которое, как и магнитное дипольное взаимодействие, пропорционально (о/с) т. е. относится к релятивистским. Обусловленную перечисленными механизмами часть полной энергии магнитоупорядоченного кристалла, зависящую от направления, принято называть энергией магнитной анизотропии гюа. Именно энергией Юа В значительной степени определяется магнитоупругое взаимодействие, или магнитострикция.  [c.370]

Действительно, если мы рассмотрим взаимодействия магнитных диполей на этом уровне, то увидим, что они складываются из (1) чисто магнитодипольных взаимодействий между магнитными моментами и (2) взаимодействий между магнитными моментами и электрическим полем кристаллической решетки (спин-орбитальные взаимодействия). Эти взаимодействия по сравнению с описанными выше обменными взаимодействиями имеют относительно малую величину порядка 1 (Уе/с)2. По этой причине часто говорят, что они имеют релятивистское происхождение. Однако, несмотря на их относительную малость по сравнению с обменными взаимодействиями, они действительно играют важную роль в ферромагнитных материалах. Причина этого двойная. Во-первых, эти взаимодействия создают в кристалле предпочтительное направление намагничивания, отвечающее минимуму энергии ферромагнетика. Они, таким образом, приводят к появлению упомянутой выше энергии анизотропии, т. е. к зависимости энергии ферромагнетика от направления вектора намагниченности— факт, не учитываемый обменной энергией. Во-вторых, именно через эти взаимодействия устанавливается связь между внешними источниками тепла и спиновой системой ферромагнетика. Если бы этих взаимодействий между спинами и колебаниями решетки не существовало, то невозможно было бы  [c.46]

Учение о магнитной анизотропии ферромагнетиков лежит в основе всей современной теории технической кривой намагничения. Это учение было создано советским ученым Акуловым [13]. Обширные экспериментальные работы по изучению магнитной анизотропии в ферромагнитных кристаллах и текстурованных поликристаллических металлах и сплавах были проведены Брюхатовым и Киренским [21], Займовским [22] и др. Исследование магнитной анизотропии имело не только теоретический, но и практический интерес, ибо в значительной степени способствовало правильному подходу к проблеме изыскания и улучшения магнитных материалов. Отметим, однако, что причины ферромагнитной анизотропии (с микроскопической точки зрения) еще недостаточно выяснены. Согласно современным представлениям энергия магнитной анизотропии появляется в результате взаимодействия спиновых магнитных моментов с орбитальными (спин-орбитальная связь) оно рассчитывается с помощью квантовомеханических уравнений [23]. Квантовая теория магнитной анизотропии даже в ее приближенной форме очень сложна и далека еще от завершения.  [c.32]


В качестве первого примера такой структуры укажем на спектр ядерного резонанса протонов, принадлежащих молекулам воды в кристалле Сп804-5Н20 [32]. Парамагнитный ион Си + с одним электроном, удаленным с 3< -оболочки, может рассматриваться в первом приближении как свободный спин с магнитным моментом 2 8. Вследствие неполного замораживания орбитального момента в зеемановский тензор g вводится 20-процентная анизотропия. Среднее расстояние между протоном и ионом меди порядка 2,5 А, и мгновенное поле электронов Не, действующее на протон, будет порядка 600 эрстед. Между соседними ионами Си + существует обменное взаимодействие / 81 82, где кон-  [c.188]


Смотреть страницы где упоминается термин Спин-орбитальное взаимодействие и магнитная анизотропия : [c.446]    [c.649]    [c.558]    [c.638]    [c.456]    [c.188]    [c.185]   
Физика твердого тела Т.2 (0) -- [ c.295 , c.335 ]



ПОИСК



1) -спин

Анизотропия

Взаимодействие спин-орбитальное

Магнитная анизотропия

Магнитное взаимодействие

Спин-орбитальное взаимодействи

Спин-орбитальное взаимодействие и магнитное взаимодействие

Спины

Спины взаимодействующие



© 2025 Mash-xxl.info Реклама на сайте