Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Асимптотический краевой вектор

Рассматривается двумерный процесс движения вершины трещины в направлении, касательном к вектору мгновенной скорости V. Вводится декартова система координат xi, Х2, связанная с вершиной трещины, ось Х2 которой совпадает с касательной к траектории. Поверхности (берега) трещины свободны от напряжений. Пространственное распределение напряжений и деформаций в любой точке в непосредственной близости к вершине трещины может быть построено в форме внутреннего асимптотического разложения, главный член которого удовлетворяет стандартной краевой задаче. Для этого прежде всего производится переход от системы отсчета, неподвижной в пространстве, к системе координат, связанной с движущейся вершиной трещины. Далее производится изменение масштаба линейных размеров таким образом, чтобы окрестность вершины  [c.84]


С математической точки зрения задача прогнозирования ресурса состоит в решении обратной краевой задачи для векторного дифференциального уравнения (5.1) с последующей обработкой результатов по формулам (5.7)—(5.9). Эта задача трудна даже в случае, когда размерности процессов q ( s) и г]) (О, а также векторов г и s невелики (в частности, равны единице). В общем случае аналитические и вычислительные трудности могут оказаться непреодолимыми, поэтому особое значение приобретают приближенные методы — асимптотический и полудетермннистический. Изложим вначале основы асимптотического метода [12], поскольку полудетерминистический метод можно трактовать как результат дальнейшего упрощения формул асимптотического метода.  [c.169]

Однако около угловой точки давление и угол наклона вектора скорости меняются на порядок по величине на малой длине. Тогда в области толщиной Ве имеющей всегда дозвуковой участок профиля скорости, составляющие скорости и, е , нормальные и тангенциальные к поверхности тела, имеют одинаковый порядок величин. Из уравнений неразрывности и импульса следует, что на длинах в окрестности угловой точки продольный и поперечный градиенты давления имеют одинаковый порядок. Использование этих оценок при совершении предельного перехода Не оо в уравнениях Навье — Стокса приводит к уравнениям Эйлера. Однако решения уравнений Эйлера не позволяют удовлетворить условиям прилипания на контуре тела. Поэтому на длинах Не / приходится рассматривать еще один, более тонкий слой, в котором главные члены уравнений Навье — Стокса, связанные с вязкостью, имеют порядок инерционных членов. Из этого условия вытекает оценка толщины области вязкого течения, которая оказывается пропорциональной Не" . В случае обтекания нетеплоизолнрованного тела возникают дополнительные особенности предельного решения уравнения энергии, с которыми можно познакомиться в работе [21]. Использование известного принципа асимптотического сращивания решений в разных характерных областях течения (см., например, [41]) позволяет получить все необходимые граничные условия. Сращивание решений для локальной области, имеющей продольный и поперечный размеры Не" / , и для внешнего сверхзвукового потока дает внешнее краевое условие для локальной области. Сращивание с решением в невозмущенном пограничном слое дает профили параметров в невозмущенном набегающем потоке , т. е. при (ж/Не" /2) ----оо. Из-за малой толщины области вязкого течения  [c.249]



Смотреть страницы где упоминается термин Асимптотический краевой вектор : [c.332]    [c.83]    [c.129]    [c.129]   
Особенности каустик и волновых фронтов (1996) -- [ c.199 ]



ПОИСК



I краевые

Ряд асимптотический



© 2025 Mash-xxl.info Реклама на сайте