Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Установки тормозного излучения

Установки тормозного излучения 250 Устойчивость 138  [c.461]

Установка для отверждения покрытий ускоренными электронами на плоских изделиях (рис. 8.24) состоит из подающего рольганга 1, пластинчатого конвейера 9 с защитными экранами 10, приемного рольганга 8 и ускорителя электронов 3. Ускоритель электронов Электрон-И1 генерирует и обеспечивает развертку и вывод пучка электронов через выходное окно 4. Установка имеет систему местной биологической защиты 5, которая представляет собой разборную конструкцию из отдельных стальных и свинцовых блоков и служит для полного поглощения вторичного тормозного излучения. Для подачи и съема изделий с конвейера в системе биологической защиты предусмотрены специальные окна 7, которые в случае превышения уровня радиации в этих местах выше нормы закрываются защитными стальными экранами 6.  [c.157]


Сильноточные бетатроны используют для высокопроизводительного контроля качества изделий большой толщины, а импульсные установки - для дефектоскопии движущихся объектов и съемки быстропротекающих процессов. Например, при просвечивании стальных изделий толщиной 200 и 510 мм тормозным излучением сильноточного бетатрона время просвечивания составило 3 с и 40 мин соответственно.  [c.260]

Рентгеновское излучение. Рентгеновское излучение возникает при бомбардировке анода быстрыми электронами (рис. 25), ускоренными большой разностью потенциалов. Раскаленная металлическая нить Н испускает электроны (электроны термоэмиссии), которые, пройдя через сетку-катод С, попадают в ускоряющее электрическое поле между катодом С и анодом А. Из анода в результате удара в него электронов испускается рентгеновское излучение. Все это происходит в объеме с высоким вакуумом, показанном штриховой линией. В обычных условиях используются разности потенциалов порядка 100 кэВ. Однако имеются установки с использованием электронов с энергией в миллион электрон-вольт. Оно генерируется также в виде тормозного излучения в бетатронах и синхротронах (синхро-тронное излучение). Рентгеновское излучение является электромагнитным, длина волн которого заключена примерно между 10 и 0,001 нм. Однако такой взгляд на природу рентгеновского излучения возник не сразу. Рентген предполагал (1895), что открытые им лучи являются продольными световыми волнами, хотя и не настаивал на этом представлении. В принципе правильные представления на природу рентгеновских лучей высказал Стокс (1897). Он считал, что это электромагнитное излучение, которое возникает в результате торможения электрона при ударе о катод. Тормозящийся электрон эквивалентен переменному току, который, как это было уже известно из опытов Герца, генерирует электромагнитные волны.  [c.48]

Сильноточные бетатроны используют для высокопроизводительного контроля качества изделий большой толщины, а импульсные установки применяют для дефектоскопии движущихся объектов и съемки быстропротека-ющих процессов. Например, при просвечивании стальных изделий толщиной 200 и 510 мм тормозным излучением сильноточного бетатрона время просвечивания составило 3 с и 40 мин соответственно. Излучение бетатрона,, как и тормозное излучение ускорителей электронов других типов, характеризуется немонохроматичностью спектра (рис. 32).  [c.299]


Дополнительные возможности в повышении дальности зондирования и уменьшении габаритов установки сулит использование в качестве источника информации неравновесного допробойного свечения атмосферы, которое является разновидностью явления электролюминесценции. Фотостимулированная электролюминесценция (ФЭЛ) [S1] возникает как результат возбуждения атомов и молекул затравочными термоэлектронами, набравшими энергию, в поле лазерного излучения за счет эффекта обратного тормозному излучению при упругих электронно-атомных соударениях. За счет ускоренных излучением горячих электронов энергия возбуждения энергетических уровней газовой среды может существенно превышать энергию кванта зондирующего лазерного излучения. Это выгодно отличает электролюминесценцию от широко используемого в зондировании эффекта флюоресценции.  [c.203]

Л е — электронная плотность, —концентрация данного иона, X — коэффициент возбуждения (слг -сек ), Лр, — вероятность спонтанного перехода (сек ), L — геометрический фактор, зависящий от размеров плазмы и апертуры спектрометра. Измерения велись на установке Зита . Произведение МеП Ь определялось из измерений континуума в видимой области спектра, г+ — общее число положительных ионов. Континуум связан с рекомбинационным и тормозным излучениями, возникающими при взаимодействии электронов с положительными нонами водорода, которые являются основой плазмы. Отношение 4/% было определено из известного процентного содержания азота (0,25%), прибавленного к водороду, и из решения уравнения ионизации для азота Те определялось по рассечению лазерного излучения. Линии КУ измерялись с помощью двух монохроматоров скользящего и нормального падения. Они градуировались с помощью монохроматора Эберта, регистрирующего видимую часть спектра. Для градуировки использовался метод двух пар линий. Ошибка в определении интенсивностей линий составляла коло 30%, но основная ошибка была обусловлена трудностью определения роли примесей, попадающих со стенок. Примеси искажают абсолютную величину сечения, но не его относительную величину. Яркость линий ЫУ возрастает по мере горения разряда в два раза. При вычислениях вводилась соответствующая поправка. Сечения возбуждения, найденные экспериментально, довольно хорошо согласуются с теоретическими расчетами для 7е=2,Ы0 °К (табл. 9.1). Наблюдаются отклонения от теоретических результатов в пределах 20—30%  [c.361]

Рис. 2. Типичная схема установки в опытах ио рассеянию электронов на дейтерии г регистрацией е — 11 совпадений / — мишень Dj 2 — электронный спектрометр 3 — элект 10ннь1е счетчики 4 — квантометр тормозного излучения 5 — свитшван. чащпта в нейтронный детектор 7 — световод. Рис. 2. Типичная схема установки в опытах ио <a href="/info/13768">рассеянию электронов</a> на дейтерии г регистрацией е — 11 совпадений / — мишень Dj 2 — электронный спектрометр 3 — элект 10ннь1е счетчики 4 — квантометр <a href="/info/7211">тормозного излучения</a> 5 — свитшван. чащпта в нейтронный детектор 7 — световод.
Наиболее распространенным ускорителем электронов является бетатрон. В нем ускорение электронов происходит по круговой орбите при возрастающем с течением времени магнитном поле. Бетатрон (рис. 6.14, б) имеет тороидальную вакуумную камеру 2, расположенную между полюсами электромагнитов I. Сама камера находится в корпусе кольцевых электромагнитов 3. Электронная пушка 4 испускает электроны, ускоряемые вихревым электрическим полем 6. Приращение энергии электронов на каждом витке диаметром примерно в1м — 15...20эВ.В зависимости от числа витков можно получить различную энергию электронов на выходе. Электроны попадают на шшень 5. создавая тормозное рентгеновское излучение. Установки, выпускаемые промышленностью следуюище МИБ-3, МИБ-4, МИБ-6, ПМБ-6,  [c.160]

Приборный отсек имеет герметически замкнутый корпус, выполненный в форме двух усеченных правильных круговых конусов, состыкованных по большому основанию. В приборном отсеке размещены радиотеле-метрическая аппаратура, аппаратура управления полетом корабля, часть аппаратуры для научных исследований (приборы для изучения космических лучей и коротковолнового излучения Солнца), аппаратура терморегулирования, источники питания 35 и тормозная двигательная установка.  [c.47]



Смотреть страницы где упоминается термин Установки тормозного излучения : [c.231]    [c.239]    [c.34]    [c.152]    [c.537]    [c.93]   
Машиностроение энциклопедия ТомIII-7 Измерения контроль испытания и диагностика РазделIII Технология производства машин (2001) -- [ c.250 ]



ПОИСК



Излучение тормозное

Тормозные установки



© 2025 Mash-xxl.info Реклама на сайте