Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь углеродистая конструкционная — Нагрев для термической

Химический состав 127, 128 Сталь углеродистая конструкционная — Нагрев для термической обработки — Продолжительность 221  [c.554]

Термическая обработка. Для снятия напряжений сварное соединение из углеродистых конструкционных сталей подвергают общему высокому отпуску (нагрев до 630...650°С с выдержкой при этой температуре из расчета 2...3 мин на 1 мм толщины металла). Охлаждение должно быть медленным, чтобы снова не возникли напряжения. Поэтому деталь охлаждают до температуры 300 °С с печью, а затем на спокойном воздухе.  [c.38]


К структуре зоны термического влияния, а следовательно и к термическим циклам нагрева и охлаждения при сварке, предъявляются различные требования, которые зависят и от материала и от условий эксплуатации изделия. В результате несоблюдения необходимых режимов структура шва и зоны влияния может значительно ухудшиться, что приведет к снижению качества сварных соединений. Так, в малоуглеродистой стали существенного изменения свойств у зоны термического влияния обычно не происходит. Низколегированные и углеродистые конструкционные стали в результате слишком быстрого охлаждения и подкалки иногда значительно снижают пластичность. В закаленных сталях (перлитного и мартенситного класса) при излишне замедленном охлаждении может произойти отпуск зоны термического влияния. Длительный нагрев высоколегированных хромистых сталей ферритного класса приводит к укрупнению их зерна, снижению пластических свойств и коррозионной стойкости. Хромоникелевые стали аустенитного класса нельзя длительное время перегревать выше температуры распада аустенита, так как при этом нарушается однородность аустенитной структуры и теряется коррозионная стойкость.  [c.154]

В некоторых случаях углеродистая конструкционная сталь должна поставляться после термической обработки, обеспечивающей в состоянии поставки механические свойства, удовлетворяющие нормам, установленным ГОСТ 1050—52 для нормализованных заготовок. Для получения этих свойств умягчающей обработки недостаточно, так как при удовлетворительном значении предела прочности сталь часто имеет пониженную величину сужения поперечного сечения, что, повидимому, вызывается неблагоприятным распределением структурных составляющих в результате охлаждения после прокатки. В этом случае необходима обработка, обеспечивающая полную перекристаллизацию, причем охлаждение следует вести достаточно быстро, чтобы получить предел прочности не ниже, чем это требуется по ГОСТ. Наилучшие результаты достигаются при нормализации стали в малых камерных печах по режиму посадка при температуре печи 860°, нагрев до 860°, выдержка 2—4 часа на садку 1—2 г и охлаждение па воздухе.  [c.515]

Термическая обработка. Для снятия напряжений сварную конструкцию из углеродистых конструкционных сталей подвергают общему высокому отпуску (нагрев до 630...650°С с вьщержкой при этой температуре из расчета 2...3 мин на 1 мм толщины металла). Охлаждение должно быть медленным для того, чтобы при этом снова не возникали напряжения. Режим охлаждения в основном зависит от химического состава стали. Чем больше содержание элементов, способствующих закалке, тем меньше должна быть скорость охлаждения. Во многих случаях деталь охлаждают до температуры 300 °С с печью, а затем на спокойном воздухе.  [c.81]


При близко поставленных точках происходит щун-тирование тока, при большом расстоянии между точками снижается прочность соединения. Точечная сварка может быть выполнена на так называемом мягком и жестком режимах. Первый характеризуется большим временем протекания тока и меньшей его плотностью у=80—160 А/мм =0,5—3 с удельное давление Р= = 1,5—4 кгс/мм . При мягком режиме обеспечиваются более плавный нагрев металла с большой зоной термического влияния и сравнительно медленное охлаждение. На этом режиме целесообразно сваривать углеродистые и легированные конструкционные стали, склонные к закалке. Жесткий режим характеризуется весьма малым временем протекания тока и большой его плотностью у=120—360 А/мм /=0,001—0,01 с удельное давление Р=0,5—15 кгс/мм . При жестком режиме обеспечивается кратковременный интенсивный нагрев с малой зоной термического влияния. На этом режиме целесообразно сваривать металлы небольшой толщины, металлы с высокой электро- и теплопроводностью, нержавеющие и жаропрочные сплавы.  [c.647]

Закалка — термическая операция, заключающаяся в нагреве до определенной температуры, выдержке в течение определенного времени при этой температуре и последующем охлаждении с определенной скоростью в закалочной среде. Цель закалки — повышение прочности и износостойкости (за счет увеличения твердости) изделий. Закалка может быть объемной (нагрев и превращения по всему объему изделия) и поверхностной (нагрев, например, токами высокой частоты и превращения в поверхностном слое). Режимы закалки различных материалов даны в работе [13]. Температуры основных видов термической обработки углеродистой качественной конструкционной стали приведены в табл. 6.  [c.107]

Углеродистая конструкционная сталь 45, если она термически не обработана, имеет предел прочности 60 кг1мм и предел текучести 34 кг/мм . Нагрев эту же сталь до 820—840° и затем охладив ее в воде с отпуском при температуре 500— 550°, можно повысить предел ее прочности до 80 кг/мм , а предел текучести — до 55 кг/мм и более. Так термической обработкой облагораживаются свойства металлов обыкновенная конструкционная сталь 45 после закалки по своим физико-механическим свойствам не уступит легированной  [c.195]

В больщинстве случаев конструкционные углеродистые и низколегированные марки стали обладают как в литом, так и в деформированном состояниях достаточно больщой технологической пластичностью в широком интервале температур. Окончание ковки многих из них может производиться в двухфазном состоянии, пластичность стали в котором также бывает до определенного предела (вполне конкретного для каждой марки стали) достаточной. В связи с этим установление оптимального температурного интервала деформирования таких марок стали представляет большой интерес с точки зрения его влияния на качество, структуру, механические и служебные свойства готового изделия после полного цикла его обработки (нагрев— деформирование — термическая обработка, включая режимы остывания).  [c.26]

При высокотемпературном жидкостном цианирб-вании нагрев ведут до 900—950° С при этой температуре в поверхностном слое изделия содержание углерода увеличивается в большей степени, чем содержание азота. Высокотемпературному жидкостному цианированию подвергают конструкционные углеродистые и легированные стали с низким и средним содержанием углерода, что необходимо для обеспечения вязкости сердцевины. Глубина цианированного слоя обычно составляет 0,2—0,3 мм. После цианирования изделия подвергают термической обработке — закалке с нагревом до 780—860° С (с охлаждением в воде или масле в зависимости от марки стали) и низкому отпуску (150—170° С). Микроструктура цианированного изделия после закалки на поверхности — азотированный мартенсит, в переходной зоне — мартенсит и троостит и в сердцевине—троостит. Твердость поверхностного слоя после закалки составляет HR 63—65.  [c.154]


Смотреть страницы где упоминается термин Сталь углеродистая конструкционная — Нагрев для термической : [c.474]   
Чугун, сталь и твердые сплавы (1959) -- [ c.0 ]



ПОИСК



Р углеродистое

СТАЛЬ 280 СТАЛЬ КОНСТРУКЦИОННАЯ

Сталь конструкционная

Сталь нагрев

Сталь углеродистая конструкционная — Нагрев для термической обработки — Продолжительность

Сталь углеродистые

Сталя углеродистые

Термическая прн нагреве

Углеродистая сталь конструкционная



© 2025 Mash-xxl.info Реклама на сайте