Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость плоской формы изгиба оболочек

Настоятельно рекомендуем не ограничиваться рассмотрением потери устойчивости сжатого стержня, а привести еще несколько технически важных примеров. Скажем, показать потерю устойчивости при прямом изгибе, потерю устойчивости сжатого радиальными силами кольца или тонкой оболочки. Не все преподаватели хорошо рисуют на доске, поэтому следует заготовить специальные плакаты, на которых показана потеря устойчивости плоской формы изгиба и сжатого кольца. Затрата времени на эти дополнительные сведения очень невелика, а познавательный эффект значителен.  [c.190]


В книгу не включен ряд практически важных задач расчета тонкостенных элементов конструкций, например устойчивость плоской формы изгиба балок, устойчивость витых пружин и естественно закрученных стержней, пологих оболочек, тонкостенных стержней и т. д. Это сделано по следующим соображениям. Автор старался сделать понятным вывод каждого соотношения даже неподготовленному читателю. Из множества задач устойчивости тонкостенных конструкций было выбрано несколько основных, на которых показана специфика задач упругой устойчивости. Автор надеется, что читатель, познакомившись с изложенными в книге решениями, сможет легче и глубже понять другие известные задачи устойчивости и главное скорее научится самостоятельно ставить и решать новые задачи.  [c.6]

Излагаются методы расчета на устойчивость сжатых стержней и пружин, сжатых естественно-закрученных стержней, а также скрученных и сжато-скрученных стержней. Рассматривается устойчивость колец и плоской формы изгиба брусьев различного вида, а также устойчивость тонкостенных элементов конструкций, прямоугольных, круглых и кольцевых пластин и оболочек вращения.  [c.2]

Примечание. Расчет устойчивости составных стержней зч пределом.пропорциональности см. [2 -], стр. 2ЙЗ расчет чстойчигюсти криволинейных стержней см. [25), стр. 291 устойчивость тонквстенных оболочек см. 117]. стр. 176 и (г. )]. стр. 296 устойчивость -гри кручении см. (25). стр. 292 устойчивость нитых пружин сжатия см. (171. стр. 172 устойчивость стержней переменного сечения см. (171, етр. 163 устойчивость плоской формы изгиба (в пределах пропорциональности) см. [17], стр. 170 устойчивость пластин см. [25], стр. 283 и [17], стр. 174.  [c.221]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]



Смотреть страницы где упоминается термин Устойчивость плоской формы изгиба оболочек : [c.339]    [c.288]    [c.682]    [c.65]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.203 , c.215 ]

Прочность Колебания Устойчивость Т.3 (1968) -- [ c.203 , c.215 ]



ПОИСК



67 — Устойчивость плоской

Изгиб оболочек

Изгиб плоский

Оболочка Устойчивость

Плоская форма - Устойчивость

Устойчивость Устойчивость при изгибе

Устойчивость плоской формы изгиба

Устойчивость формы

Форма изгиба



© 2025 Mash-xxl.info Реклама на сайте