Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рябов

В наше время для этой цели не нужно обращаться к броуновскому движению. Потому что сейчас основная профессия флуктуаций состоит в том, что они проявляются в виде шумов-измери- тельных устройств, приводя к дрожанию стрелок измерительных приборов, пляске цифр на цифровом табло или к ряби на экране осциллографа. Тем самым они ограничивают точность физических измерений.  [c.42]

При М os ф > 1 + I/sin О (что возможно лишь при М > 2) величина X снова вещественна, но теперь надо выбрать ч < 0. Согласно (8) при этом -4 > 1, т. е. отражение происходит с усилением волны. Более того, знаменатели выражений (8) с х < О могут обратиться в нуль при определенных углах падения волны, и тогда коэффициент отражения обращается в бесконечность. Поскольку этот знаменатель совпадает (с точностью до обозначений) с левой стороной уравнения (3) предыдущей задачи, то можно сразу заключить, что резонансные углы падения определяются равенствами (5) я (6) (последнее — при М>2 ). В свою очередь, бесконечность коэффициента отражения (и прохождения), т. е. конечность амплитуды отраженной волны при стремящейся к нулю амплитуде падающей волны, означает возможность спонтанного излучения звука поверхностью разрыва раз созданное на ней возмущение (рябь) неограниченно долго продолжает излучать звуковые волны, не затухая и не усиливаясь при этом энергия, уносимая излучаемым звуком, черпается из всей движущейся среды.  [c.455]


Соблюдение условий эволюционности само по себе необходимо, но еще недостаточно для гарантирования устойчивости ударной волны. Волна может оказаться неустойчивой по отношению к возмущениям, характеризующимся периодичностью вдоль поверхности разрыва и представляющим собой как бы рябь , или гофрировку , на этой поверхности (такого рода возмущения рассматривались уже в 29 для тангенциальных разрывов) ). Покажем, каким образом исследуется этот вопрос для ударных волн в произвольной среде (С. П. Дьяков, 1954).  [c.472]

Условия (90,12—13) отвечают наличию у уравнения (90,10) комплексных корней, удовлетворяющих требованиям (90,11). Но в определенных условиях это уравнение может иметь также и корни с вещественными со и kx, отвечающие уходящим от разрыва реальным незатухающим звуковым и энтропийным волнам, т. е. спонтанному излучению звука поверхностью разрыва. Мы будем говорить о такой ситуации как об особом виде неустойчивости ударной волны, хотя неустойчивости в буквальном смысле здесь нет, — раз созданное на поверхности разрыва возмущение (рябь) неограниченно долго продолжает излучать волны, не затухая и не усиливаясь при этом энергия, уносимая излучаемыми волнами, черпается из всей движущейся среды ).  [c.475]

Вопрос о том, чем определяется отбор одного из двух решений в конкретных гидродинамических задачах, не ясен. Если отбирается распадное решение, то это означало бы, что неустойчивость ударной волны с самопроизвольным усилением поверхностной ряби вообще не осуществляется. По-видимому, однако, такой отбор не может быть связан именно с этой неустойчивостью, поскольку неоднозначность решения не ограничена условиями (90,12—13)2).  [c.478]

Рябо Ю, А, Движение небесных T . i,. Vi, Наука, 1977,  [c.341]

Короткие волны, определяемые соотношениями (3.15) и (3.16), называются капиллярными. Смысл названия очевиден все характеристики таких волн определяются капиллярными силами. Иногда используют иное название капиллярных волн — рябь . Для системы вода—воздух область капиллярных волн ограничена условием Я < 1 мм.  [c.138]

Аэрация потока на быстротоках (рис. 26.12). При входе потока на начальный участок / длиной происходит нарастание турбулентного пограничного слоя вплоть до его выхода на поверхность. Свободная поверхность на этом участке остается ненарушенной какими-либо возмущениями, отсутствует рябь на свободной поверхности. В пределах начального участка существует ядро постоянных скоростей.  [c.245]

На рис. 16 показаны четыре формы потери устойчивости, возможные в трехслойных конструкциях. Общая форма потери устойчивости соответствует Эйлеровой форме потери устойчивости стержня сдвиговая форма является разновидностью общей потери устойчивости, которая происходит за счет сдвига заполнителя. Сморщивание несущих слоев представляет собой местную или коротковолновую форму потери устойчивости. И наконец, явление, сопровождающееся появлением ряби на несущих слоях, связано с общей потерей устойчивости слоя в пределах ячейки сотового заполнителя.  [c.199]


Рябов в. р. Применение биметаллических и армированных сталеалюминиевых соединений. 15 л., 1 р.  [c.232]

Т юйники, крестовины и другие детали более сяохной конфигурации футеруют методом прессования в самом изделия с КОПОЛьаованием эластичных резиновых камер (ряб.31).  [c.77]

На рис. 5.7.5 проиллюстрировано влияние кинетики фазового перехода на смыкание пузырька Aq = 0,01 мм при р<, = 1 бар. Ре = 1,2 бар. При р = О имеем случай чисто газового пузырька без фазовых переходов, когда он совершает затухающие из-за тепловой и вязкой диссипации колебания, стремясь к равновесному состоянию, определяемому внешним давлением рд. Чем больше р, тем меньше заметна затухающая осциллирующая рябь на фоне угасающего пузырька. При р — оо имеем предельную кривую, соответствующую квазиравповесной схеме.  [c.291]

При начальной температуре воды 85...90°С (в зависимости от тщательности предварительной дегазации воды) на выходной поверхности образца всегда появляются видимые мельчайшие пузырьки воздуха. С повышением температуры и принижением ее к 100°С число и размеры пузырьков увеличиваются. Они медленно растут, достигают в максимальных случаях диаметра — 0,6 мм, отрываются и сносятся потоком. При приближении начальной температуры воды к 100° С происходит постепенный переход от выделения газопаровых пузырьков к паровым. Он состоит в том, что число центров образования и частота отрыва пузырьков возрастают, а их максимальные размеры уменьшаются до диаметра меньше 0,1 мм. При повышении температуры от 100 до 102 °С мельчайшие паровые пузырьки выбегают сплошными цепочками и лопаются на поверхности жидкостной пленки, образуя на ней мельчайшую рябь и туман из микрокапель. При дальнейшем повышении начальной температуры практически из каждой поры идут сплошные паровые микроструи, интенсивность которых непрерывно возрастает. Вся поверхность образца равномерно усеяна мельчайшими белыми источниками паровых микроструй. Пленка жидкости на ней набухает, становится рыхлой и белеет. Появляется шум. В дальнейшем интенсивность истечения паровых микроструй еще более возрастает, шум увеличивается. На пленке образуются бесформенные белые скопления размером около 5 мм, быстро сбегающие вниз или отрывающиеся от ее поверхности в виде бесформенных вначале комков. Такой механизм по мере увеличения его интенсивности наблюдается без качественных изменений до предельных исследованных начальных температур воды 180 °С, что соответствует возрастанию массового расходного паросодержания вытекающего двухфазного потока от О до 0,15.  [c.79]

Услония ряб(Л1>1 и обласги применения  [c.365]

К происхождению неустойчивости ударных волн в области (90,17) можно подойти также и с несколько иной точки зрения, рассмотрев отражение от поверхности разрыва звука, падающего на нее со стороны сжатого газа. Поскольку ударная волна движется относительно газа впереди нее со сверхзвуковой скоростью, то в этот газ звук не проникает, В газе же позади волны будем иметь, наряду с падающей звуковой волной, еще и отраженную звуковую и энтропийно-вихревую волны (а на самой поверхности разрыва возникает рябь). Задача об определении коэффициента отражения по своей постановке близка к задаче об исследовании устойчивости. Разница состоит в том, что наряду с подлежащими определению амплитудами исходящих от разрыва (отраженных) волн в граничных условиях фигурирует еще и заданная амплитуда приходящей (падающей) звуковой волны. Вместо системы однородных алгебраических уравнений мы будем иметь теперь систему неоднородных уравнений, в которых роль неоднородности играют члены с амплитудой падающей волны. Peuienne этой системы дается выражениями, в знаменателях которых стоит определитель однородных уравнений,— как раз тот, приравнивание которого нулю дает дисперсионное уравнение спонтанных возмущений (90,10). Тот факт, что в области (90,17) это уравнение имеет веш,ественные корни для os 0, означает, что существуют определенные значения угла отражения (и тем самым угла падения), при которых коэффициент отражения становится бесконечным. Это — другая фор-  [c.476]

Впоследствии схема Рябу-шинского была обобщена для других случаев рядом авторов. В частности, М. И. Гуревичем рассмотрена задача о кавитационном обтекании наклонной пластины (рис. 10.10, б). Д. А. Эфросом и независимо другими авторами предложена одна из наиболее удачных схем суперкаверны с возвратной струйкой (рис. 10.10, в). По этой схеме в концевой части каверны образуется возвратная струйка, которая при описании течения G помощью функций комплексного переменного, уходит на второй лист римановой поверхности. Поэтому условие постоянства размеров каверны не нарушается. Эта схема для плоской пластины дает результаты, близкие к результатам, полученным по схеме Рябушинского. Было предложено и несколько других схем. На рис. 10.10, г, д, е приведены схемы Тулина, Жуковского — Рошко, Лаврентьева. Каждая из них позволяет решить задачу обтекания и, в частности, найти коэффициент лобового сопротивления обтекаемого тела как функцию числа кавитации х. Для этого коэффициента по схемам нескольких авторов для пластины, нормальной к потоку, получена формула  [c.402]


На рис. 2.6.4 проиллюстрировано влияние кинетики фазового перехода на смыкание пузырька, определяемой коэффициентом Кц, пропорциональным При = О имеем случай чисто газового пузырька без фазовых переходов, когда он совершает затухающие из-за тепловой и вязкой диссипации колебания, стремясь к равновесному состоянию, определяемому внешним давлением Ре. Чем больше т, тем меньше заметна затухающая осциллирующая рябь на фоне угасающего иузырька. При Kg, °° имеем предельную кривую, соответствующую равновесной схеме. Штриховой линией на рис. 2.6.4 отмечены те участки кривых, где решение дает физически нереализуемые скорости фазовых переходов (см. (1.3.90)), большие чем  [c.194]

Преимущество установок первого типа—отсутствие на поверхности воды посторонних волн, а недостаток их —необходимость наличия зазоров между движущейся моделью и дном, трудность измерений на подвижной модели. Этого недостатка лишены установки второго типа, зато в них при движении воды на поверхности образуется рябь, т. е. большое количество мелких возмущений, которые могут искажать результаты измерений. Срздание гладкой поверхности движущейся жидкости весьма  [c.480]


Смотреть страницы где упоминается термин Рябов : [c.274]    [c.24]    [c.466]    [c.225]    [c.453]    [c.472]    [c.202]    [c.348]    [c.570]    [c.152]    [c.199]    [c.207]    [c.338]    [c.456]    [c.476]    [c.298]    [c.41]    [c.235]    [c.280]    [c.285]    [c.347]    [c.161]    [c.22]    [c.289]    [c.298]    [c.139]    [c.324]   
Теория упругости (1975) -- [ c.552 ]

Анализ и проектирование конструкций. Том 7. Ч.1 (1978) -- [ c.187 ]

Машиностроение Автоматическое управление машинами и системами машин Радиотехника, электроника и электросвязь (1970) -- [ c.324 ]



ПОИСК



Ocean Ripple (океанская рябь)

Ripple (рябь)

Волны ряби

Волны, вызванные местным возмущением. Эффект движущегося источника возмущения волны и рябь

Гальванические покрытия цветных металлов (А. Я Рябой)

Декорирование стекла распылением металлов. В. А. Рябов, Федосеев

Дэниел. Фотоупругое исследование композитов. Перевод Рябого

Железнение Рябой)

Зейферта — Ряба теорема

Знаменский, Л. А. Рябинки н. Первые результаты применения сейсмического метода РНП в Актюбинском Приуралье

Кадмирование Рябой)

МАШИНЫ И АГРЕГАТЫ ДОМЕННОГО ПРОИЗВОДСТВА Рябов, Г. Г. ГалиДоменный цех. Машины и механизмы для подачи шихтовых материалов к доменному подъемнику

МЕТОДЫ ОПРЕДЕЛЕНИЯ И УЛУЧШЕНИЯ ОРБИТ (РЯБОВ Ю. А.) Вычисление координат невозмущенного кеплеровского движения по элементам орбиты

Нелинейная теория ряби Фарадея

Общетехнические сведения (А. Я Рябой)

Пагано. Роль эффективных модулей в исследовании упругих свойств слоистых композитов. Перевод В. М. Рябого

Пагано. Точные модули анизотропных слоистых композитов Перевод В. М. Рябого

Приборы ротационные Рябова А. В. и Емельянова

Применение статистических теорий для определения тепловых, электрических и магнитных свойств неоднородных материалов. Перевод В. М, Рябого

Рябинки и, Ю. В. Напалков, Г. Н. Путимцев Аппаратура для регулируемого направленного приема сейсмических волн

Рябинки и, Ю. В. Напалков. О методике интерпретации данных метода РНП

Рябов Р А. Энергия связи атома водорода в металлах

Рябь (Фарадей)

Рябь на кривой ослабления

ТЕОРИЯ ВОЗМУЩЕННОГО ДВИЖЕНИЯ (ГРЕБЕНИКОВ Е. А., РЯБОВ Ю. А.) Дифференциальные уравнения движения задачи п тел в координатах

Фарадеевы исследования ряби

ЧИСЛЕННЫЕ МЕТОДЫ (РЯБОВ Ю. А.) Интерполирование и приближение функций

Швецов Н. И., Рябов Р. А., Кодес Е. С., Бармин Н. И Экспериментальная установка для изучения внутреннего трения в металлах при низких температурах



© 2025 Mash-xxl.info Реклама на сайте