Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эффект абсолютный электрического поля

Абсолютное значение константы К характеризует пригодность данного вещества к использованию его в ячейке Керра. Обычно постоянной Керра называют эту величину, выраженную в длинах волн, т.е. К/Х. Она заметно уменьшается с повышением температуры жидкости, так как тепловое движение молекул препятствует их ориентации. Для нитробензола она достаточно велика — эффект легко наблюдается при подаче на конденсатор импульса напряжения с амплитудой в несколько сотен вольт. Наблюдение эффекта Керра в других жидкостях (а особенно в газах) требует использования значительно большей напряженности электрического поля.  [c.122]


Если изменение абсолютного значения скорости свободного носителя заряда за счет внешнего поля на среднем пути между соударениями сравнимо с тепловой скоростью, то нельзя считать,что его подвижность не зависит от величины внешнего поля. С увеличением напряженности электрического поля выше критического значения в зависимости от доминирующего механизма рассеяния подвижность свободных носителей заряда люжет как уменьшаться, так и увеличиваться. С изменением подвижности свободных носителей заряда под действие.м сильного электрического поля связаны явление разогрева электронно-дырочного газа и эффект Ганна.  [c.68]

Положение здесь не абсолютно взаимно, как может показаться на некоторых простых примерах. Механическое напряжение, приложенное к линейному деформируемому твердому диэлектрику с кристаллической решеткой, не имеющей центра симметрии, вырабатывает электрическую поляризацию, величина которой прямо пропорциональна напряжению. В этом состоит знаменитый прямой пьезоэлектрический эффект, являющийся следствием линейности электромеханического взаимодействия. Он существует даже в случае пространственной однородности всех величин. Имеется и обратный эффект, состоящий в появлении напряжения, Линейно зависящего от электрического поля.  [c.12]

Коэффициенты называются поляризуемостями. Электронная поляризуемость ае- /- (0), где /(0)—безразмерная плотность абсолютной величины заряда в центре электронного облака f(r = 0). Ионная поляризуемость а , как показано, имеет количественные характеристики, аналогичные электронной. Перед обсуждением ориентационной поляризации нужно указать на следующее различие молекул. Молекулы бывают полярные и неполярные в соответствии с тем, имеют они или нет постоянный дипольный момент. При наличии электрического поля на полярные молекулы действует момент сил, который стремится ориентировать их вдоль поля. Это и есть эффект ориентационной поляризации. В противоположность этому на неполярные молекулы не действует ориентирующий момент сил, но поле может придать им ионную поляризацию.  [c.27]

Постановка задачи о параметрических колебаниях цилиндрической оболочки. Рассмотрим колебания электромеханической системы, схематически представленной на рис. 2 (приведено сечение плоскостью ху). Исследуемый объект представляет собой абсолютно жесткий цилиндрический конденсатор, внутренняя и внешняя обкладки которого имеют радиус 61 и 62 соответственно образующие цилиндров направлены вдоль оси г. Кроме того, обкладки считаются абсолютно твердыми идеально проводящими коаксиальными цилиндрами, находящимися при нулевом потенциале (заземлены). Между этими цилиндрами также коаксиально расположена средняя обкладка радиуса а 61 < а < 62 она моделируется упругой цилиндрической оболочкой. Предполагается, что материал оболочки идеально проводящий и к ней прилагается переменное электрическое напряжение (потенциал) V = /( ), в частности и 1) = ПосовШ, где П — постоянные. Объект считается достаточно протяженным вдоль оси образующей (вдоль оси г) его длина I а, 61,2- Это допущение позволит пренебречь концевыми эффектами и рассмотреть плоскую электромеханическую систему (в плоскости ху, см. рис. 2), т. е. упругое тонкое кольцо в плоском электрическом поле.  [c.52]


Лоренц ) получил логические следствия из постулатов Друде и использовал их для более точной и широкой трактовки задачи. Он предположил, что скорости электронов в металле при постоянной температуре и отсутствии внешнего поля подчиняются закону распределения Максвелла-Больцмана, и при помощи остроумного метода нашёл, как изменяется это распределение при наличии электрических полей и тем пературных градиентов. Используя эти результаты, можно было про извести вычисления проводимостей более точно, чем это делал Друде Кроме того, оказалось возможным рассмотрение различных термоэлек трических эффектов. Как это иногда бывает в таких случаях, резуль таты Друде находились в несколько лучшем согласии с экспериментом чем результаты Лоренца. Однако эта разница имеет меньшее значение чем два следующих основных возражения к теории 1) применение ста тистики Максвелла-Больцмана приводит к выводу, что электроны принимают большее участие в удельной теплоёмкости металлов, чем это допустимо, если справедлива теория Эйнштейна-Дебая для атомных колебаний решётки 2) для объяснения исчезновения сопротивления прн абсолютном нуле необходимо было предположить, что средняя длина свободного пробега электрона при абсолютном нуле превращается  [c.154]

Оптика движущихся тел является другой областью оптики, не затронутой в настоящей книге. Как и квантовая теория, она превратилась в широкий независимый раздел знания. Первым наблюденным явлением в этой области, отмеченным в 1728 г. Джеймсом Брэдли (1692—1762 гг.) [55], было явление аберрации неподвижных звезд , т. е. обнаружение небольшого различия их угловых положений, связанного с движением Земли относительно направления светового луча. Брэдли правильно понял это явление, связав его с конечностью скорости распространения света, в результате чего ему удалось определить последнюю. Мы уже упоминали и другие явления, относящиеся к оптике движущихся сред Френель первый заинтересовался увлечением света движущимися телами и показал, что световой эфир участвует в движении со скоростью, которая меньше скорости движущихся тат затем Физо экспериментально продемонстрировал такое частичное увлечение света в опытах с текущей водой. Христиан Допплер (1803—1853 гг.) [56] исследовал эффекты, связанные с двнже1П1ем источника свста или наблюдателя, и сформулировал хорошо известный принцип, названный его именем. До тех пор, пока теория упругого светового эфира считалась верной, а область исследований и точность измерений были достаточно ограниченными, идея Френеля о частичном увлечении света была способна объяснить все наблюдаемые явления. Электромагнитная же теории света встретилась з.цесь с трудностями фундаментального характера. Герц первый попытался обобщить уравнения Макс-ветла на случай движущихся тел. Однако его формулы противоречили некоторым электромагнитным и оптическим измерениям. Огромную роль сыграла теория Гендрика Антона Лоренца (1853—1928 гг.), который предположил, что эфир в состоянии абсолютного покоя является носителем электромагнитного поля, и вывел свойства материальных тел из взаимодействия элементарных электрических частиц — электронов. Е.му удалось показать, что фре-нелевские коэффициенты увлечения света можно получить из его теории и все известные в то время (1895 г.) явления можно объяснить на основании его гипотезы [57]. Однако в результате колоссального увеличения точности измерения оптических путей, достигнутого с помощью интерферометра Альберта Абрагама Майкельсона (1852—1931 гг.), возникла новая трудность оказалось невозможным обнаружить эфирный ветер , наличие которого следовало из теории неподвижного э ира [58, 59). Эта трудность была преодолена в 1905 г, Альберто.м Эйнштейном [60] в его специальной теории относительности.  [c.21]


Смотреть страницы где упоминается термин Эффект абсолютный электрического поля : [c.68]    [c.408]    [c.73]   
Приборы для неразрушающего контроля материалов и изделий (1976) -- [ c.2 , c.196 ]



ПОИСК



Электрическое поле

Эффект абсолютный

Эффект поля

Эффект электрического поля



© 2025 Mash-xxl.info Реклама на сайте