Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение адиабатическое в вязкой жидкости

Теоретическая (рациональная) гидродинамика стремится приближенно предсказать движение реальной жидкости путем решения краевых задач для соответствующих систем дифференциальных уравнений в частных производных. При составлении этих уравнений в качестве аксиом принимают законы движения Ньютона. Предполагается также, что рассматриваемая жидкость (обычная жидкость или газ) всюду непрерывна и что на любую часть поверхности действует вполне определенное давление или какое-либо другое внутреннее напряжение (сила, приходящаяся на единицу площади), которое, по крайней мере локально, является дифференцируемой функцией координат, времени и направления. Наконец, устанавливается связь этих напряжений с движением жидкости посредством введения различных параметров, характеризующих данное вещество (плотность, вязкость и т. д.), и функциональных зависимостей (закон адиабатического сжатия и т. п.). Исходя из таких допущений, математики составили системы дифференциальных уравнений для различных идеализированных жидкостей (несжимаемой невязкой, сжимаемой невязкой, несжимаемой вязкой и т. д.).  [c.15]


В основу вывода уравнений движения вязкой жидкости Пуассон положил своеобразный анализ деформации частиц среды за бесконечно малые промежутки времени, представляя каждую элементарную деформацию состоящей из двух процессов — упругой деформации согласно уравнениям теории упругости и последующего перераспределения (выравнивания) давлений в жидкости. Применение этих рассуждений привело Пуассона к прспорцио-нальности касательных напряжений скоростям деформации частиц. Однако в результате он получил уравнения движения, содержащие формально не две, а три физические характеристики жидкости (помимо плотности). Причиной этого было отсутствие достаточно строгого определения равновесного давления в потоке вязкой жидкости. Впрочем для малосжимаемой капельной ншдкости и адиабатического движения газа Пуассон свел число независимых физических характеристик жидкости к двум, в результате чего его уравнения движения приняли форму, близкую к точным уравнениям движения вязкой жидкости.  [c.67]

До сих пор мы рассматривали движение идеальной жидкости и предполагали, что процесс—адиабатический. Применим теперь общее уравнение сохранения энергии (12) к реальной (вязкой) жидкости. Для простоты будем считать жидкость неснашаемой и вначале предположим, что теплообмен выделенной струйки  [c.105]

Так как число функций, подлежащих определению в рассматриваемых нами случаях, увеличивается до пяти (три составляющие скорости, давление и удельный объем), то четырех уравнений классической гидродинамики становится недостаточно и приходится обращаться к пятому уравнению — к уравнению притока тепла. При этом необходимо сделать определенные предположения о характере притока тепла. Мы ограничимся в дальнейшем следующими случаями 1) приток тепла задан наперед как функция координат и времени (например, адиабатическое движение) 2) приток тепла происходит за счет теплопроводности 3) он состоит из превращенной в тепло работы диссипативных сил внутреннего трения и из притока тепла, являющегося наперед заданной функцией координат и времени, и, наконец, 4) приток тепла образуется из двух частей а) из превращенной в тепло работы диссипативных сил внутреннего трения и 6) из тепла, притекающего в силу процесса тепл опроводности. Для идеальной (невязкой) сжимаемой жидкости третий случай, очевидно, совпадает с первым или со вторым для вязкой жидкости мы будем в третьем случае иметь дело с псевдоадиабатическим движением, коль скоро наперед заданная часаь притока тепла равна нулю.  [c.27]


Рис. 1,2.10. Формирование конвективных ячеек валикового типа (а) и цилиндрического зонального потока (б) на быстро вращающейся жидкой сфере. Валиковая конвекция является наиболее характерной формой конвективной неустойчивости вязкой проводящей жидкости, подогреваемой снизу, при равномерном осесимметричном вращении, а коаксиальные цилиндрические поверхности служат наиболее общей формой зонального течения идеальной жидкости с внутренним адиабатическим градиентом температуры. Передача энергии наклонных конвективных ячеек зональному течению в сдвиговом горизонтальном слое отражает взаимодействие этих двух форм движений. Согласно Буссе, 1976, Ингерсолл, Поллард, 1982). Рис. 1,2.10. Формирование конвективных ячеек валикового типа (а) и цилиндрического зонального потока (б) на быстро вращающейся <a href="/info/131292">жидкой сфере</a>. Валиковая конвекция является наиболее характерной формой <a href="/info/13992">конвективной неустойчивости</a> вязкой проводящей жидкости, подогреваемой снизу, при равномерном осесимметричном вращении, а коаксиальные <a href="/info/26135">цилиндрические поверхности</a> служат наиболее <a href="/info/112199">общей формой</a> зонального <a href="/info/223415">течения идеальной жидкости</a> с внутренним <a href="/info/242212">адиабатическим градиентом</a> температуры. <a href="/info/30704">Передача энергии</a> наклонных конвективных ячеек зональному течению в сдвиговом горизонтальном <a href="/info/598763">слое отражает</a> взаимодействие этих двух форм движений. Согласно Буссе, 1976, Ингерсолл, Поллард, 1982).

Смотреть страницы где упоминается термин Движение адиабатическое в вязкой жидкости : [c.183]   
Аэродинамика Часть 1 (1949) -- [ c.537 ]



ПОИСК



Адиабатическое жидкости

Вязкая жидкость в движении

Движение адиабатическое

Движение вязкой жидкости

Движение жидкости адиабатическое

Жидкость вязкая



© 2025 Mash-xxl.info Реклама на сайте