Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двумерные гидропрофили

В табл. 6.3А приведены значения отношения Ki /Ki , вычисленные для двумерного и трехмерного одиночных элементов шероховатости, расположенных на гидропрофиле на расстоянии X от передней кромки, где Ср =—0,5. Данные, приведенные в таблице, соответствуют следующим условиям x = 50,8 мм, толщина пограничного слоя б==1,27 мм, параметр формы Я = = 1,33 (для профиля скорости степени /б)- Видно, что небольшие шероховатости могут значительно увеличить опасность кавитации. Следует отметить также, что упомянутый двумерный элемент шероховатости оказывает более сильное влияние, чем трехмерный элемент той же самой высоты.  [c.294]


Третья модель была независимо предложена Гербером и Макнауном [24], Эпплером [20], а также Рошко [64]. В рамках этой модели с помощью разреза в плоскости годографа можно задать любое давление в каверне вблизи тела. Предполагается, что вниз по течению от некоторой точки на стенке каверны (форма которой определяется по этой теории) давление плавно возрастает от заданного значения до его значения в свободном потоке. Эта модель, называемая моделью переходного течения, показана на фиг, 5.27, в. Во всех трех моделях использован классический метод конформного отображения в плоскости годографа. Все три модели дают близкие результаты для течения вблизи тела и, следовательно, близкие значения сил, действующих на тело. На фиг. 5.27 линии тока в плоскости годографа вблизи пластины Л С во всех трех случаях почти одинаковы. Ву [93] использовал модель переходного течения в нелинейной теории двумерных гидропрофилей, работающих в режиме полностью развитой кавитации при К>0.  [c.225]

В некоторых случаях присоединенная каверна может стабилизироваться до такой степени, что ее длина колеблется около среднего значения, но сама она не проходит фазы полного заполнения, отрыва и повторного образования. Цикличность может сохраниться, но периодическое накопление и выброс жидкости, внесенной в каверну обратной струей, будет происходить только в ее концевой зоне. Именно так ведут себя каверны, замыкающиеся на криволинейных хвостовых частях симметричных стоек и погруженных тел (разд. 5.4.4). В этом смысле они являются квазистационарными. Такие квазистационарные каверны, длина которых меньше длины тела, образуются на гидропрофилях, обтекаемых под углом атаки. Длинные суперкаверны, тянущиеся за телом, также стремятся к стационарному состоянию. Ниже в этой главе при рассмотрении суперкавитации будет показано, что прогресс в исследовании стационарных каверн был достигнут благодаря линеаризации, которая не требует учета условий в обратной струе, образующейся в конце каверны. Линейная теория для расчета двумерных профилей с замыкающимися на поверхности тела кавернами была применена в работах [1,26, 39]. Акоста [1] рассматривал плоскую пластинку с каверной, присоединенной на острых передней и задней кромках. Он получил следующие соотношения для длины каверны 1с и коэффициента подъемной силы для пластины с хордой I в зависимости от числа кавитации К и угла атаки а  [c.209]

Полностью развитая каверна, охватывающая гидропрофиль под углом атаки, представляет собой частный случай несимметричной суперкаверны. В общем случае асимметрия тела или его ориентации (например, угол атаки), сила тяжести (или какие-либо другие массовые силы) и несимметрия граничных поверхностей приводят к нарушению симметрии течения, каверны и связанного с ними поля гидродинамического давления около тела. Возникающая при этом поперечная сила представляет большой интерес главным образом с точки зрения создания подъемной силы, а также с точки зрения специальных проблем устойчивости и управляемости тела с каверной. Гидропрофили относятся к числу таких тел, и благодаря их большому практическому значению были выполнены обширные исследования гидродинамики течений с развитой кавитацией. В частности, особое внимание уделялось простому двумерному профилю как основному элементу конструкций. Рассмотрим лишь основные достижения в этой области.  [c.242]


Решетка гидропрофилей представляет собой бесконечный ряд профилей одинаковой формы, установленных параллельно и на равном расстоянии друг от друга. Характеристики течения в такой решетке являются комбинацией соответствующих характеристик в криволинейных каналах и при обтекании изолированного гидрокрыла. Направление течения регулируется в большей степени, чем при обтекании изолированного гидрокрыла, но проточные каналы имеют конечную длину, и поэтому необходимо рассматривать условия течения на входе и выходе. Исследование решеток позволяет определить их характеристики, которые необходимы при проектировании различных гидравлических машин с вращающимся элементом от многолопастных винтов кораблей до радиальных и осевых насосов и турбин. Конечно, устанавливая связь между течениями в решетках и в машинах с вращающимся элементом, нужно учитывать некоторые основные факторы. Во-первых, во всех типах машин с вращающимся элементом происходит передача энергии от лопастей вращающегося элемента жидкости. Во-вторых, течение в решетках двумерно, в то время как в гидравлических машинах течение во вращающемся поле трехмерно.  [c.358]

При дальнейшем усовершенствовании установки Калифорнийского технологического института она была оборудована двумерной рабочей частью и дзухкомпонентными весами для испытания гидропрофилей и решеток [20].  [c.567]


Кавитация (1974) -- [ c.242 , c.247 ]



ПОИСК



Гидропрофили

Двумерные гидропрофили с суперкаверной

Тор двумерный



© 2025 Mash-xxl.info Реклама на сайте