Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Течение в следе максимальная интенсивность турбулентности

Турбулентность внешнего потока характеризуется интенсивностью и масштабом турбулентности. Интенсивность турбулентности определяется как отношение среднеквадратичной пульса-ционной составляющей скорости к скорости осредненного движения. Под масштабом турбулентности мы будем понимать размер пульсирующего образования — моль. В турбулентном потоке существует целый спектр масштабов турбулентности от минимального до максимального, определяемого размером и условиями течения среды. Актуальность задачи расчета теплообмена при ламинарном пограничном слое, существующем в условиях внешнего турбулентного потока, определила появление большого количества исследований этого явления. При этом в большинстве случаев анализ результатов исследования проводился на основании только параметров турбулентности невозмущенного внешнего потока, т. е. параметров турбулентности, которые существуют в потоке вдали от тела. Следует отметить противоречивость полученных в этом случае результатов исследования.  [c.393]


Из предположения, что число Рейнольдса, рассчитанное по диаметру трубы и максимальной окружной скорости, составляет 10 -10 , следует что интенсивность пристенной турбулентности равна 5,1-7%, т. е. она почти на порядок меньше свободной. Кроме того, линейные масштабы свободной турбулентности, по крайней мере, на порядок больше линейных масштабов пристенной турбулентности. По этой причине коэффициент диссипации для пристенной турбулентности значительно выше, чем для свободной. В результате существенно более слабая пристенная турбулентность диссипирует намного быстрее свободной. Именно по этой причине ее роль в процессе энергоразделения несущественна. Вычисляя оптимальный радиус вихревой трубы, можно анализировать лишь свободную турбулентность, трактуемую как результат взаимодействия вращающихся с различной скоростью закрученных струек газа в плоскости, перпендикулярной оси трубы. По существу, рассматривается течение в плоскости, хотя в действительности в любом сечении камеры энергоразделения вихревой трубы имеются осевые компоненты скорости. Они важны при анализе физической картины течения, обусловливая взаимодействие вихревых потоков в осевом направлении. Это взаимодействие является дополнительной причиной генерации свободной турбулентности, роль которой возрастает по мере увеличения уровня осевых скоростей в трубе, т. е. с ростом относительной доли охлахаенно-го потока ц. По этой причине эффективность энергоразделения в противоточной вихревой трубе выше, чем в прямоточной, а в про-тивоточной трубе с дополнительным потоком выше, чем в обычной противоточной разделительной вихревой трубе.  [c.177]

Исследование интенсивности пульсаций скорости, автокорреляционной функции и спектральной плотности позволило выявить физическую природу рштенсификации теплообмена в пучках витых труб. Оказалось, что дополнительная турбули-зация потока связана с закруткой и неравномерностью поля скорости в ядре потока. Так, сдвиг энергетического спектра турбулентности в область высоких частот (волновых чисел) по сравнению со спектром в круглой трубе, характеризующий возрастание диссипации энергии, наблюдается во всей области течения и для всех исследованных чисел Ее и Гг . При этом максимальные значения интенсивности турбулентности наблюдаются в следе за местами касания соседних труб, где энергетический спектр сдвинут в область высоких частот в большей мере. Увеличение доли энергосодержащих вихрей с ростом числа Рг (увеличением относительного шага закрутки труб S d) и уменьшение интенсивности турбулентности как за местами касания труб, так и в сквозных каналах, свидетельствует об уменьшении дополнительной турбулизации потока в пучке витых труб. Эти закономерности наблюдаются и при исследовании усредненных характеристик потока (коэффициентов теплоотдачи и гидравлического сопротивления) [39].  [c.82]


Анализ результатов траверсирования различными зондами объема камеры энергоразделения позволяет выделить следующие характерные особенности распределения параметров в вихревой трубе с дополнительным потоком. Как и в обычных разделительных вихревых трубах, работающих при ц 1, четко различаются два вихря — периферийный и приосевой, перемещающиеся в противоположных направлениях вдоль оси. Первый — от соплового сечения к дросселю, второй — в обратном направлении. Распределение параметров осредненного потока существенно неравномерно как по сечению, згак и по длине камеры энергоразделения. Радиальные градиенты статического давления и полной температуры уменьшаются от соплового сечения к дросселю, а их максимальные значения наблюдаются в сопловом сечении. Распределение тангенциальных и осевых компонент скорости качественно подобны для различных сечений, однако, количественно вдоль трубы они претерпевают изменения. Поверхность разделения вихрей в большей части вихревой зоны близка к цилиндрической, о чем свидетельствуют пересечения осевых скоростей для различных сечений примерно в одной точке оси абцисс Т= 0,8 (см. рис. 3.9 и 3.10). Это хорошо согласуется с результатами исследований вихревых труб с диффузорной камерой энер-горазцеления, работающих при ц < 0,8, и позволяет в составлении аналитических методик расчета вихревых труб с дополнительным потоком вводить допущение dr /dz = О, а радиус разделения вихрей Tj для этого класса труб считать равным примерно 0,8. Как и у обычных труб, интенсивность закрутки периферийного потока вдоль трубы снижается -> 0), а возвратное при-осевое течение формируется в основном из вводимых дополнительно масс газа, скорость которых на выходе из трубки подвода дополнительного потока имеет осевое направление. По мере продвижения к отверстию диафрагмы приосевые массы в процессе турбулентного энергомассообмена с периферийным вихрем приобретают окружную составляющую скорости. Затухание закрутки периферийных слоев происходит тем интенсивнее, чем больше относительная доля охлажденного потока. Опыты показывают, что прй оптимальном по энергетической эффективности  [c.112]

В пристенном слое трубы скорость V изменяется по закону квазитвердого вращения [39], причем максимальное значение скорости V устанавливается на внешней границе пристенного слоя. Таким образом, скорость V изменяется в тонком пристенном слое от нуля на стенке труб до максимального значения на внешней границе. С ростом числа Рейнольдса при заданном числе Ргм интенсивность закрутки уменьшается, а следовательно уменьшается и скорость V (см. рис. 1.6, 6). Поэтому в переходной области чисел Ее < Ю следует ожидать большей интенсивности тепломассообменных процессов. Составляющая вектора скорости w, направленная перпендикулярно большей стороне овального профиля трубы, также, как и составляющая скорости V достигает максимального значения на внешней границе пристенного слоя (см. рис. 1.6, б). При этом скорость И в подветренной части профиля направлена к стенке трубы, а в наветренной — от стенки. Такие эпюры скоростей в ячейках пучка витых труб свидетельствуют о наличии интенсивных обменных процессов между пристенным слоем и ядром потока благодаря конвекции. Изменение скоростей V и И в тонком пристенном слое от О до максимальных значений означает, что закрутка потока воздействует, прежде всего, на пристенную область течения, где за счет этого существенно повышается уровень турбулентности по сравнению с уровнем турбулентности в ядре потока пучка [39]. Этот эффект сказывается на увеличении коэффициента теплоотдачи в пучках витых труб, который возрастает в той же мере, что и коэффи-  [c.45]


Отрывные течения Том 3 (1970) -- [ c.2 , c.115 ]



ПОИСК



Интенсивность турбулентности

Следы

Течение в следе

Течение в следе турбулентное

Течение турбулентное



© 2025 Mash-xxl.info Реклама на сайте