Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Томсон В., теорема — о постоянстве цнр

Движение жидкости, лишенной трения, с вращением частиц. Вихревые нити. Для изучения движений однородной, лишенной трения жидкости с вращением частиц воспользуемся опять теоремой Томсона о постоянстве циркуляции по замкнутому жидкому контуру. Из этой теоремы и из геометрических свойств ротации скорости (называемой также вихревым вектором) можно вывести известные теоремы Гельмгольца о вихревых движениях. Эти теоремы, касающиеся весьма важных геометрических и механических соотношений, имеющих место при движении жидкости с вращением частиц, были выведены самим Гельмгольцем несколько иным путем, а именно — на основе электродинамических представлений . Однако следствия, вытекающие из этих теорем, получаются простыми только в том случае, когда частицы жидкости, находящиеся во вращении, занимают область в виде нити, и вне этой области движение происходит без вращения частиц. В таком случае говорят о вихревых нитях. Важнейшие теоремы о вихревых нитях можно вывести из свойств окружающего их потенциального течения, не углубляясь при этом в детали движения жидкости с вращением частиц. Таким образом, мы должны вернуться  [c.107]


Можно показать, что в баротропной невязкой жидкости при потенциальных массовых силах циркуляция постоянна. Это известная теорема Кельвина (Томсона) о постоянстве циркуляции.  [c.234]

Теорема Томсона о постоянстве циркуляции  [c.101]

ТЕОРЕМА ТОМСОНА О ПОСТОЯНСТВЕ ЦИРКУЛЯЦИИ  [c.101]

Температура, значение — для подъемной силы газонаполненных воздушных кораблей 55, 57 Температурный градиент 38 Течение, функция 142 Томсон В., теорема — о постоянстве цир куляции во времени 167 Траектория 69 Тропосфера 37 Трубка тока 13  [c.223]

Возможность появления Следует помнить, что постоянство цирку-замкнутых контуров с ляции, как вытекает из доказательства г ф о в потенциальном теоремы Томсона, имеет место только по потоке с поверхностями контурам, получающимся друг из друга разрыва скорости непрерывной деформацией.  [c.330]

Вихри, срывающиеся с цилиндра с частотой, определяемой числом Струхаля, приводят к появлению знакопеременной подъемной силы. Механизм этого явления заключается в следующем при срыве вихря, например, с нижней стороны горизонтального цилиндра (левое вращение), возникает вращательное движение жидкости, противоположное по знаку вращению оторвавшегося вихря, что следует из постоянства циркуляции (теорема Томсона). Это вращательное движение жидкости вокруг цилиндра приводит к увеличению скорости сверху и к ее понижению снизу, что по теореме Бернулли повышает давление снизу цилиндра и понижает — сверху. Вследствие разности давлений возникает направленная поперек потока и вверх подъемная сила. Через полупериод, определяемый для круглого цилиндра числом Струхаля, равным 0,2, срывается сверху вихрь правого вращения циркуляция будет противоположного вращения, что вызывает появление подъемной силы, направленной вниз. Через следующий полупериод картина зеркально повторится и т. д. При неизменной скорости потока такие вихри регулярно срываются с цилиндра и на него также регулярно действуют импульсы силы. Подъемная сила не может мгновенно появиться и исчезнуть через полупериод, что объясняется инерцией жидкости, поэтому график движения ее имеет вид синусоиды со сдвигом фазы приблизительно на 90° относительно движения. Это установлено опытами в трубе с использованием градуированных датчиков давления с поправками на инерцию [24].  [c.100]

Таким образом, dVldt = О, что означает постоянство циркуляции Г во времени, а значит, и справедливость сформулированной выше теоремы Томсона.  [c.108]


Вопрос о влиянии гироскопических и диссипативных сил на устойчивость положения равновесия консервативной системы был поставлен, как известно, В. Томсоном (лордом Кельвином), установившим ряд теорем. Эти теоремы Кельвина впервые были строго даказаны приь1енением функций Ляпунова в весьма изящной форме Четаевым (1946), обратившим при этом внимание на принципиальную и прикладную важность введенных Кельвином понятий вековой и временной устойчивости и возможность гироскопической стабилизации. Впоследствии, например, Четаев (1956) показал, что равносторонний треугольник в плоской задаче трех тел неустойчив при постоянстве угловой скорости со вращения луча соединяющего какие-либо два тела из трех, и его нельзя стабилизировать добавлением каких-либо гироскопических сил. В случае движения относительно центра масс системы, когда onst, вообще, лапласов треугольник не имеет вековой устойчивости, но может иметь гироскопическую устойчивость.  [c.38]


Смотреть страницы где упоминается термин Томсон В., теорема — о постоянстве цнр : [c.167]   
Гидро- и аэромеханика Том 1 Равновесие движение жидкостей без трения (1933) -- [ c.0 ]



ПОИСК



Теорема Томсона о постоянстве циркуляции

Томсон

Томсон В., теорема — о постоянстве цнр куляции во времени

Томсона теорема



© 2025 Mash-xxl.info Реклама на сайте