Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Краевая задача в дополнительных напряжениях смещениях

Заметим, что рассмотрение этих задач (как и вообще задач для сред произвольной реологии) может проводиться в двух принципиально различных направлениях. В одном случае рассматриваются уравнения Ламе (4.4) гл. II и их обобщения на случай динамики и периодических колебаний. Здесь приходится решать систему дифференциальных уравнений для трех компонент вектора смещений, исходя из краевых условий на сами смещения или определенные комбинации их производных (тогда говорят, что задача решается в смещениях). В другом же случае исходят из уравнений движения (1.11) гл. II и уравнений совместности деформаций в напряжениях (4.11) — (4.13) и (4.16) — (4.18) гл. II и аналогичных им уравнений, если используются системы координат, отличные от декартовых. В этом случае подлежат определению шесть компонент тензора напряжений из девяти дифференциальных уравнений (говорят, что здесь решается задача в напряжениях). Отметим, что в этом случае возникают дополнительные трудности, когда па границе заданы смещения, поскольку их восстановление по напряжениям весьма громоздко.  [c.242]


Из условия удовлетворения граничным условиям (2) в предположении, что закон распределения напряжений под штампом задан = 1 у)), используя соотношения закона Гука и связь локальных систем координат между собой, получаем систему двух интегро-функциональных уравнений относительно трех неизвестных Х у ), ф), (г/)). Для замыкания системы используем заданный закон смещения подошвы штампа. В результате получаем дополнительное интегральное уравнение, замыкающее систему. Таким образом, исходная краевая задача сведена к системе интегро-  [c.313]

Однородное интегральное уравнение, союзное к (2.24), представляет собой уравнение, которое можно получить, если пытаться построить решение первой основной задачи для областей Dt, 02, Оз, . .., От в виде обобщенного упругого потенциала двойного слоя, распределенного на всех поверхностях ). Поскольку краевые условия однородны, то все смещения в дополнительных областях будут равны нулю, а следовательно, будут равны нулю и напряжения. Из непрерывности же вектора напряжений на границе будет вытекать, что во всей области О напряжения равны нулю, что приводит к смещениям тела как жесткого целого. Поскольку же нетривиальное решение при однородных условиях существует, то в общем случае уравнение  [c.567]

Рассмотрим теперь краевые условия. На той части поверхности, где заданы смещения, вопрос решается автоматически — согласно построению вспомогательной задачи краевые условия должны быть сохранены без изменения. На той же части поверхности, где заданы напряжения, необходимо ввести дополнительные поверхностные силы которые определяются из равенств (7).  [c.672]

В случае внутренних разрезов (/2 = 1, 2, Л ) функции (V.115) равны нулю вследствие выполнения условия однозначности смещения (1.154). Потенциалы (V.112) с дополнительными слагаемыми (V.115) уже удовлетворяют условиям (IV.120). Заметим, что изложенный здесь прием обобщения комплексных потенциалов напряжений на случай краевых разрезов был использован ранее [108] при рассмотрении задачи о коллинеарных трещинах в бесконечной плоскости с круговым отверстием, когда разрезы расположены вдоль прямой, проходящей через центр отверстия.  [c.168]

В межзвуковом диапазоне скоростей С2 < с < физическая картина движения тонкого заостренного симметричного клина в однородной упругой плоскости имеет сходство со случаями обтекания тела дозвуковым потоком идеальной сжимаемой жидкости или упругой средой при скоростях Сд < с < С2 (рис. 3). В зависимости от профиля клина /(х) (/(0) = О, / (х) <С 1, / Ч )1 схэ) и скорости, точка отрыва совпадает с задней кромкой тела (/ = 1) или является промежуточной I < 1). Снесенные на прямую у = О смешанные краевые условия этой задачи для определения полей напряжений, смещений (и, у) и скоростей (II, V) в верхней полуплоскости у > О и дополнительные условия в форме неравенств следующие  [c.662]


В силу того что в общем случае нагрузкар (s) на S не самоуравновеше-на, дополнительно предположим, что тело закреплено от смещений и поворотов в некоторой точке V. Определим из решения этой задачи вектор перемещений (s) на 5. Вычитая полученный вектор перемещений из заданного м (s), сведем исходную задачу к случаю однородных статических краевых условий на S. Таким образом, поставленную задачу, не нарушая общности, можно рассматривать с нулевым вектором напряжений на 5 (p (s) =0) и кинематическим краевым условием, равным и,1 = —  [c.64]


Смотреть страницы где упоминается термин Краевая задача в дополнительных напряжениях смещениях : [c.200]   
Методы граничных элементов в механике твердого тела (1987) -- [ c.30 , c.71 , c.73 , c.79 , c.96 , c.99 , c.120 ]



ПОИСК



I краевые

Дополнительные задачи

Задача в напряжениях

Задача краевая

Краевая задача в дополнительных напряжениях

Краевая задача в дополнительных напряжениях напряжениях

Напряжение дополнительные

Ток смещения



© 2025 Mash-xxl.info Реклама на сайте