Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Титан рутением

СИСТЕМА ТИТАН — РУТЕНИИ  [c.177]

В работе [26] богатые титаном сплавы с стемы титан — рутений исследованы очень подробно, границы фазовых полей а-и р-твердых растворов надежно определены. Мы изучали фазовые равновесия в системе титан — рутений при температурах выше 1100° С [7] (рис. 1).  [c.177]

Отметим еще одну особенность строения диаграмм состояния этих систем. Не будучи изоморфными с -титаном, рутений, осмий, родий и иридий стабилизируют р-твердый раствор до низких температур, т. е. здесь, как и при образовании твердых растворов,  [c.189]


Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий).  [c.39]

Эвтектическая кристаллизация Р- и 6-фаз, которую наблюдали авторы работы [26] при 1540 С, нами не обнаружена. Сплавы, богатые титаном, кристаллизуются из расплава, образуя пологий минимум на кривой кристаллизации при 1550° С. С увеличением содержания рутения р-фаза образуется по перитектической реакции при 1575° С (в работе [261 температуры солидуса сплавов в этой области составов не определены эвтектическая горизонталь 1540° С проведена как продолжение кривой солидуса богатых титаном сплавов).  [c.178]

О наличии перитектической реакции свидетельствует и микроструктура литых сплавов, содержащих 25—40 ат.% Ru, в том числе и эвтектического, по данным [26], состава — хорошо образованные дендриты первично кристаллизующейся б-фазы в сплошной матрице Р-фазы. Растворимость рутения в р-титане при 1575° С составляет 25 ат.%, с понижением температуры она уменьшается до 21 ат.% при 1100°С.  [c.178]

Палладий Pd Платина Pt Плутоний Ри Празеодим Рг Рений Re Родий Rh Ртуть Hg Рубидий Rb Рутений Ru Самарий Sm Свинец РЬ Селен Se Сера S Серебро Ag Скандий S Стронций Sr Сурьма Sb Таллий Т1 Тантал Та Теллур Те Тербий ТЬ Титан Ti Торий Th Тулий Ти  [c.9]

Платима (Pt). . , Рений (Re). ... Родий (Rh),. . , Ртуть (Н ). ... Рутений (Ru). , Свиней РЬ). . . Серебро (Ag).. . Сурьма (Sb). , . Таллий (Т1). .. Тантал (Та). , , Титан (Ti). . . . Торий (I h). ..  [c.426]

Вольфрам хорошо растворим в алюминии, титане, ванадии, цирконии, платине, осмии, родии и рутении, но почти не растворяется в ртути. Имеют-сй сообщения о соединениях вольфрама с бериллием и теллуром. Вольфрам слабо растворим в тории и уране. Он не образует сплавов с кальцием, медью, магнием, марганцем, свинцом, цинком, серебром и оловом.  [c.152]

Олово Селен Рутений Титан  [c.364]

Таблица 29.31 Свойства гранатов с титаном и рутением [133, 134] Таблица 29.31 Свойства гранатов с титаном и рутением [133, 134]

В качестве материала для анодов используются графит, платинированный титан и титан, покрытый окислами рутения (ОРТ). На этих электродах перенапряжение выделения хлора меньше, чем кислорода, поэтому на анодах в основном выделяется хлор. В контакте с влажным хлором, кислородом, соляной и хлорноватистой кислотами этп аноды обладают достаточно высокой химической стойкостью.  [c.106]

Как установил Н. Д. Томашов, введение в титан катодных добавок, таких как палладий, платина, рутений, рений и др., приводит к резкому уменьшению скорости коррозии в растворах серной, соляной и фосфорной кислот. Так, например, при содержании 0,2% Р(1 скорость коррозии титана в 5%-ном растворе НгЗО при температуре кипения уменьшается в 50 раз.  [c.142]

Алюминий г аллий. Уран. . Молибден Цинк. . Цирконий Осмий.. Кадмий. Рутений. Титан. . Гафний. Иридий.  [c.284]

Циркониевые тигли в индукционных печах выдерживают до 30 плавок платины. В этих тиглях можно плавить палладий, рутений и родий. Титан и основной шлак сильно реагируют с циркониевыми огнеупорами. Кислые шлаки, стекло, расплавы окислов, 4>а-сплавы солей можно нагревать в тиглях из стабилизированной  [c.393]

Многочисленные цветные металлы в свою очередь подразделяются в зависимости от физико-механических свойств на ряд групп тяжелые (медь, никель, свинец, цинк, олово) легкие (алюминий, магний, кальций, бериллий, титан, литий, барий, стронций, натрий, калий, рубидий, цезий) благородные (золото, серебро, платина, осмий, рутений, родий, палладий) редкие металлы. Последние в свою очередь условно делят на тугоплавкие (вольфрам, молибден, ванадий, тантал, ниобий, цирконий) редкоземельные (скандий, иттрий, лантан, церий, празеодим, неодим, самарий, европий и др.) рассеянные (германий, рений, селен и др.) и радиоактивные (уран, торий, радий, протактиний).  [c.20]

При маркировке цветных сплавов приняты следующие обозначения А - алюминий Б - бериллий Бр - бронза В - вольфрам Г - германий Гл - галлий Ж - железо Зл - золото И - иридий К - кремний Кд - кадмий Ко - кобальт Л - латунь М - медь Мг - магний Мц - марганец Мш - мышьяк Н - никель Нд - неодим О - олово Ос - осмий Пд -палладий Пл - платина Р - ртуть Ре - рений Рд - родий Ру - рутений С - свинец Ср - серебро Сл - селен Су - сурьма Ти - титан Тл - таллий ТТ - тантал Ф - фосфор X - хром Ц - цинк.  [c.568]

Серебро Т антал Титан Золото Иридий Осмий Палладий Платина Родий Рутений  [c.53]

Цветные металлы в свою очередь подразделяют в зависимости от физико-механических свойств на ряд групп тяжелые (медь, никель, свинец, цинк, олово) легкие (алюминий, магний, кальций, бериллий, титан, литий, барий, стронций, натрий, калий, рубидий, цезий) благородные (золото, серебро, платина, осмий, рутений, родий, палладий) редкие металлы. Послед-  [c.5]

Цветные металлы, в свою очередь, подразделяют в зависимости от их физико-механических свойств на ряд групп тяжелые (никель, медь, цинк, олово, свинец), легкие (литий, бериллий, натрий, магний, алюминий, калий, кальций, титан, рубидий, стронций, цезий, барий) благородные (рутений, родий, палладий, серебро, осмий, платина, золото) и редкие, которые, в свою очередь, условно делят на тугоплавкие (ванадий, цирконий, ниобий, молибден, тантал, вольфрам), редкоземельные (скандий, иттрий, лантан, церий, празеодим, неодим, самарий, европий и др.), рассеянные (германий, селен, рений и др.) и радиоактивные (радий, торий, протактиний, уран).  [c.5]

Методами металлографического, рентгенографического и дифференциального термического анализов изучено строение сплавов титана с металлами группы платины. На основании полученных экспериментальных данных построены диаграммы состояния системы титан — рутений, титан — осмий, титан — родий, титан — иридий и титан — палладий. Обсуждены особенности строения диаграмм состояния двойных систем титана с металлами VIII группы в зависимости от их положения в периодической системе элементов. Рис. 6, библиогр. 32.  [c.231]

Низкая коррозионная стойкость титана в кипящих растворах НС1 или H2SO4 (114 мм/год в Ю % НС1) повышается на три порядка в присутствии небольших количеств ионов или Fe (0,15 мм/год в кипящей 10 % НС1 с добавкой 0,02 моль/л Си " или Fe ) [8]. Присутствие небольшого, количества никеля как в среде, так и в виде легирующей добавки к титану повышает коррозионную стойкость. Показано, например, что титан пассивируется в кипящем 3 % растворе Na l, подкисленном до pH = 1, если металл легировать 0,1 % Ni или ввести в раствор 0,2 мг/л [9]. Наименьшим коррозионным разрушениям подвергается базисная плоскость гексагональной плотноупакованной решетки титана. Небольшие легирующие добавки палладия, платины или рутения также эффективно уменьшают скорость коррозии в кипящем Ю % растворе НС1 (2,5 мм/год для сплава с 0,1 % Pd см. рис. 24.1) [10, 11]. Если на поверхности титана присутствует палладий, скорость коррозии в кипящем 1т растворе H2SO4 уменьшается в 1000 раз 112], причем одинаково эффективно по-  [c.373]


Таким образом, все металлы VHI группы образуют с титаном фазы на основе эквиатомных соединений с кристаллической структурой типа s l. Эта структура в системах с железом, рутением, осмием и кобальтом устойчива вплоть до комнатной температуры во всей области гомогенности этих фаз. В системах с родием и иридием существует узкий интервал ее устойчивого состояния при сравнительно низких температурах за счет стабилизации избыточным, по сравнению с эквиатомным составом, содержанием титана. В сплавах близких к эквиатомному, а в системах с никелем, палладием и платиной — во всей области гомогенности — с понижением температуры  [c.187]

Эффективным мероприятием по продлению срока службы оборудования химпроизводств является рациональное использование материалов. В частности, положительный эффект удалось получить на предприятиях за счет внедрения титана и титановых сплавов.. На Уфимском химическом заводе создан специальный участок по-изготовлению титанового оборудования. Основное применение-титан нашел для изготовления оборудования, работающего о влажным хлоргазом и кислыми хлорорганическими средами. Общая экономия от внедрения титанового оборудования составила более 300 тыс. руб., а мероприятия, проведенные на заводе совместно с ВНИИКом по защите титановых коллекторов и др. оборудования в цехе электролиза от электрокоррозии (в результате токов утечки) покрытиями на основе окиси рутения и марганца,, дали дополнительный эффект более 100 тыс. руб.  [c.8]

Было исследовано влияние легирования титана рутением и проведено сравнение катодного действия рутения и палладия на коррозионное поведение титановых сплавов в растворах НС1 и H2SO4 при 25—100 °С [210]. Установлено, что рутений введенный в титан (от 0,05 до 2 %) значительно повышает устойчивость сплавов в кислотах.  [c.251]

В работе [211] также исследованы Ti —Ru сплавы с 0,07—0,55 %Ru, TiO,2Pd и чистый титан в кипящих растворах 5 и 10 %-ных H2SO4 и НС1. Сравнение сплавов Ti — Ru со сплавами Ti — Pd показало, что в растворах H2SO4 поведение их практически идентично. В растворах 5 и 10 %-ной НС1 сплавы Ti — Ru были несколько устойчивее. В этой работе наблюдалось, как это было ранее установлено и в наших исследованиях [212], что наличие палладия в титане снижает его наводороживание. Оказалось, что в таких условиях воздействие рутения даже эффективнее, чем палладия.  [c.251]

Представляло интерес исследование поведения титана в контакте с анодными материалами при анодной поляризации в растворах хлористого натрия. Создание такого контакта может служить одним из средств защиты титана от коррозии под действием токов утечки. В качестве анодных материалов исследовался графит марки МГ и титан е покрытием на основе двуокиси рутения, нанесен-нш по технологии, разработанной применительно к анодам ОРТА [3]. Электрод состоял из титанового цилиндра диаметром 10, днижй  [c.37]

Исследования гфоводились на составных электродах титан-графит и титан-титан о покрытием на основе двуокиси рутения.  [c.130]

Никель Ниобий Олово Осмий Палладий Платина Полоний Празеодим Протактиний Радий Рений Родий Ртуть Рубидий Рутений Самарий Свинец обыкновенный Свинец тори-евый Свинец урановый Селен Сера Серебро Скандий Стронций Сурьма Таллий Тантал Теллур Тербий Титан Торий Тулий Углерод Уран Фосфор Фтор Хлор Хром Цезий Церий Цинк Цирконий Эманация Эрбий  [c.27]

При приготовлении цитратного электролита дицианоаурат калия вводят после нейтрализации лимонной кислоты раствором КОН до pH 4—4,5, что предотвращает образование в растворе при низких значениях pH мелкодисперсной труднорастворимой соли золота. Вследствие заметного растворения в цитратных электролитах коррозионно-стойкой стали в качестве анодов можно использовать платину, а также титан, покрытый тонким слоем платины или оксидов рутения. Следует учитывать, что на платине скорость окисления лимонной кислоты ниже, чем на золоте, и поэтому в первом случае стабильность электролита несколько выше. Если приходится применять коррозионно-стойкую сталь, анодная плотность тока, как и в нейтральных электролитах, не должна превышать 0,2 А/дм . Для повышения стабильности работы электролита рекомендуется при значительном накоплении в нем ионов калия удалять их с помощью катионитовых диафрагм.  [c.110]

Температура перехода титана в сверхпроводимое состояние очень низкая (0,4 К), что не позволяет использовать чистый титан как сверхпроводящий материал. Однако легирование его ниобием, рутением и некоторыми другими элементами значительно повышает температуру перехода. Так, например, сплав Ti—22 Nb имеет 7 ьр=9 К и допускает использование высоких  [c.115]

В промышленности использзтот преимущественно сплавы этих металлов, упрочняемые путем упрочнения твердого раствора и образования мелкодисперсной фазы. Наиболее сильными упрочнителями для ниобия являются цирконий, гафний, вольфрам, молибден, ванадий для тантала - ванадий, молибден, гафний, вольфрам, а также рутений, рений, осмий для ванадия - титан, цирконий, ниобий, вольфрам. Для получения сплавов с повышенной жаропрочностью на основе ниобия и тантала в качестве легирующих элементов используют углерод, азот, бор, которые наряду с некоторым упрочнением твердого раствора образ тот вторую дисперсн)то фазу (карбиды, нитриды, бориды), упрочняющую металл особенно эффективно при одновременном введении титана, циркония, гафния. Из рассматриваемых металлов V группы наибольшее применение имеют сплавы на основе ниобия.  [c.151]

Литий Натрий. Калий Рубидий. Цезий. . Медь. . Серебро. Золото Бериллий Магний. Кальций Стронций Барий, . Радий. . Цинк. . Кадмий Ртуть. . Бор. . . Алюминий Скандий. Иттрий Лантан. Актиний Галлий Индий Таллий Кремний Германий Олово. . Свинец Титан. . Цирконий Гафний. Ванадий. Ниобий. Тантал Сурьма. Висмут Хром. . Молибден Вольфрам Селен. . Теллур. Марганец Рений. . Железо. Кобальт. Никель Рутений. Родий. . Палладии Осмнй. . Иридий. Платина Торий. . Уран. . Лантан Церий  [c.293]


Непрерывные твердые растворы с никелем дают маргаиец, железо, кобальт, медь, палладий, родий, иридий, плагина. Ограниченные твердые растворы с никелем образуют бериллий, бор, углерод, магний, алюминий, кремний, фосфор, титан, ванадий, хром, цинк, галлий, германий, мышьяк, цирконий, ниобий, молибден, рутений, индий, олово, сурьма, лантан, тантал, вольфрам, рений, осмий, висмут и уран.  [c.340]

Неодим Неон Никель Ниобий Олово. Осмий. Палладий Платина Полоний Празеодим Протакти ний. . Радий. Радон Рений. Родий. Ртуть Рубидий Рутений Самарий Свинец, Селен. , Сера. . Серебро Скандий Строицлй Сурьма. Таллий, Тантал Теллур Тербий. Титан. Гор ИЙ. Тулий. Углсфод уран. . Фосфор Фтор. . Хлор. . Хром. . Цезий.  [c.271]


Смотреть страницы где упоминается термин Титан рутением : [c.43]    [c.194]    [c.194]    [c.382]    [c.38]    [c.48]    [c.1228]    [c.1229]    [c.1238]    [c.1241]    [c.42]    [c.576]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.251 ]



ПОИСК



Рутений

Титан

Титанит

Титания



© 2025 Mash-xxl.info Реклама на сайте