Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ползучесть металлов и сплавов в циклическая

Анализ экспериментальных данных показывает, что значение Е при различных значениях асимметрии цикла нагружения, когда в металлах и сплавах реализуется циклическая ползучесть, остается постоянным для исследуемого металла и температуры и не зависит от режима нагружения. В том случае, если одновременно протекают процессы циклической ползучести, зарождения и развития усталостной трещины, значение I непостоянно и зависит от асимметрии цикла и уровня максимальных напряжений. При этом также следует учитывать, что при переходе от квазистатического разрушения к усталостному, как это следует из рис. 15, резко изменяется значение Вр, а это вносит дополнительные сложности в определение долговечности с использованием зависимости (II.1).  [c.40]


Достижение предельного состояния при реализации критического распределения напряжений и деформаций на фронте трещины характеризует переход к глобальному (нестабильному) разрушению. Однако в зависимости от условий нагружения при росте трещины могут реализоваться условия для локальной нестабильности разрушения. Наиболее полно спектр пороговых значений К , отвечающих смене диссипативных структур, реализуется при циклическом нагружении и постоянной нагрузке низкого уровня. Как уже отмечалось в предыдущей главе, микроразрушение отрывом связано с достижением критического соотношения теоретических прочностей на сдвиг и на отрыв, контролируемого постоянной Л= [Lm/H G/E], полученной на основе идеи о независимости удельной энергии разрушения от вида подводимой энергии. Эта идея отражает принцип самоорганизации процессов диссипации энергии в металлах и сплавах при том или ином виде воздействия. Термодинамические аспекты этой идеи развиты В. В. Федоровым [110]. Согласно его концепции, критерием повреждаемости локального объема является критическая плотность внутренней энергии At/ , накопленной при его предельной деформации. Это позволило с единых позиций рассмотреть кинетику повреждений металлов и сплавов при ползучести, усталости, статическом деформировании, трении и т. п. Концепция с позиций термодинамики объясняет постоянство критической плотности энергии деформации и ее независимость от внешних факторов, что согласуется с концепцией [71].  [c.112]

В ограниченной области изменения температур и напряжений некоторые аустенитные сложнолегированные сплавы почти нечувствительны к колебаниям температуры 158, 59]. Тем не менее ползучесть металлов и сплавов при циклическом изменении температуры нельзя предсказать тривиальным усреднением по форме цикла (251— 254, 275, 287, 288]. Поведение материалов настолько отличается от ожидаемого, что гипотеза трансформированного времени не всегда в состоянии объяснить наблюдаемые эффекты. Дальнейшим шагом для понимания проблемы ползучести при переменной температуре явилась гипотеза температурного последействия. Данная гипотеза сводится к предположению о том, что всякое реальное твердое тело наследственно по температуре, т. е. обладает своеобразной памятью в отношении температурной предыстории. Это означает, что при любом изменении температуры скорость ползучести, соответствующая новой температуре, устанавливается не сразу, а в течение некоторого промежутка времени, необходимого для того, чтобы память о прежней температуре была полностью снята [92].  [c.355]


Типичное семейство кривых циклической ползучести, которые характеризуют процесс направленного пластического деформирования металла при различных уровнях максимальных напряжений цикла, представлено на рис. 1 для титанового сплава ВТ6С. Между процессами циклической ползучести и разрушения, как следует из анали.за экспериментальных данных, наблюдается четкая взаимосвязь. Если ползучесть характеризуется трехстадийностью, то макро-разрушеиие имеет квазистатический характер, т. е. происходит после реализации предельной пластичности, сопровождается образованием шейки в сечении разрыва, как и при статических испытаниях на кратковременную прочность.  [c.135]

Исследования малоцикловой усталости различных сталей и сплавов при пульсирующем растяжении в области долговечностей 0,5 ч- 2 X 10 циклов показали, что при циклическом упругопластическом деформировании существует тесная взаимосвязь между процессами деформирования и разрушения материала. Изменение характера макроразрушения от квазистатического к усталостному, вызывающее появление разрывов на предельных кривых пластичности, обусловлено изменением особенностей микродеформироваиия и микроразрушения металлов, которое фиксируется по переломам на предельных кривых скоростей ползучести и кривых малоцикловой усталости соответственно.  [c.425]

Приведем перечень основных видов испытаний, которые в настоящее время используют при исследовании механических и технологических свойств металлов и сплавов статические испытания в условиях одноосного напряженного состояния испытания на ударную вязкость и вязкость разрущения пластометрические исследования испытания на статическую и динамическую твердость и микротвердость испытания на предельную пластичность и технологические испытания (пробы) испытания в условиях сложнонапряженного состояния испытания на ползучесть, длительную прочность и жаростойкость испытания на циклическую, контактную прочность, усталость н в условиях сверхпластичности высокоскоростные испытания испытания при наложении высокого гидростатического давления испытания в вакууме, ультразвуковом поле, в условиях сверхпластичности и т. д.  [c.38]

Малоцикловая усталость. Кривые малоцикловой усталости при мягком нагружении (амплитуда напряжений постоянная) для титановых сплавов, как и для других металлов, можно условно разбить на три типичных участка первый — неразрушения, второй и третий — соответственно квазистатического и усталостного разрушения. На первом участке, лежащем в интервале до —40—50 циклов, разрушения при амплитуде напряжений ниже временного сопротивления не происходит. На втором участке материал разрушается в результате циклической ползучести после исчерпания его пластичности и носит явно выраженный квазистатический характер (наличие шейки, большая остаточная деформация). Усталостное разрушение, наблюдающееся на третьем участке, характеризуется низким остаточным удлинением и специфическим усталостным видом излома. Протяженность участка квазистатического разрушения для титановых сплавов меняется в достаточно широких прёделах (от 40 до 20 ООО циклов) и при прочих равных условиях зависит от температуры испытания. Типичные Кривые малоцикловой усталости титановых сплавов [84] при пульсирующей нагрузке растяжением представлены на рис. 77. При жестком циклическом нагружении (амплитуда  [c.164]

При температурах (0,6 0,7) Т л, т. е. при сварке, например, нержавеющих и жаропрочных сталей и сплавов, применении мягких режимов или при высоких темпах сварки доминирующим процессом, определяющим стойкость электродов, по-видимому, будет ползучесть, контролируемая диффузией. При более низких температурах — (0,4н-0,5) Тпл, — развивающихся на рабочей поверхности электродов, при сварке на жестких режимах, легких сплавов или отдельными точками при длительных перегревах наряду с ползучестью большую роль играют процессы термической и малоцикловой усталости. Поэтому к материалу электродов, предназначенных для работы при высоких температурах, предъявляются повышенные требования по сопротивлению ползучести, т. е. более высокой жаропрочности, в частности одночасовой горячей твердости и длительной прочности. В связи с этим для изготовления электродов желательно иметь металл с более крупным зерном, так как при высоких температурах более стойким против ползучести будет крупнозернистый материал с повышенной жаропрочностью. Так как при циклических нагревах образуются внутризеренные и главным образом, межзеренные трещины металл должен обладать высокой пластичностью при повышенных температурах, как лучше сопротивляющийся термической усталости. При точечной сварке легких сплавов более высокая стойкость наблюдается у электродов с мелким зерном, высокой электропроводностью и не содержащих в своем составе поверхностно-активных элементов, взаимодействующих со свариваемыми материалами путем диффузии и схватывания.  [c.9]



Смотреть страницы где упоминается термин Ползучесть металлов и сплавов в циклическая : [c.14]    [c.119]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.8 ]



ПОИСК



Металлы и сплавы Металлы

Сплавы Ползучесть

Сплавы металлов

Циклическая ползучесть

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте