Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анизотропия магнитных свойств оптическая

Анизотропия — различие значений свойств (деформационных, электрических, магнитных, тепловых, оптических и др.) в материале по разным направлениям.  [c.11]

Жидкие кристаллы обладают анизотропией упругости, электропроводности, магнитной восприимчивости и диэлектрической проницаемости, оптической анизотропией, сегнетоэлектрическими свойствами и др.  [c.14]

Искусственная анизотропия и сопровождающее ее двойное лучепреломление могут возникнуть у оптически неактивных тел, становящихся под действием электрического (эффект Керра) или магнитного (явление Коттон—Мутона) внешнего поля анизотропными и приобретающих оптические свойства, подобные свойствам одноосных кристаллов.  [c.208]


Естественный луч представляет собой поперечную электромагнитную волну с хаотической произвольной ориентацией этих векторов относительно волновой нормали. Если естественный луч проходит через прозрачный кристалл, атомы которого располагаются в виде пространственной решетки таким образом, что свойства оптического кристалла по различным направлениям оказываются различными, т. е. наблюдается анизотропия, то можно получить на выходе из такого кристалла-поляризатора луч, который будет иметь вполне определенную ориентацию векторов Е н Н. Практически это означает, что при прохождении через такой кристалл луч раздваивается (двойное лучепреломление). Каждый из таких лучей при про-хо кдении через второй кристалл будет снова раздваиваться, но давать лучи различной интенсивности, а в некоторых случаях один луч (второй) практически исчезает. Вращая вокруг оси такой кристалл, можно пропускать больше или меньше света. Таким образом, получается поляризованный свет, представляющий собой световые волны с определенной ориентацией электрического и магнитного векторов. Помещая на пути такого луча модель из прозрачного материала, будем изменять условия прохождения света в зависимости от того, как будут ориентированы оси анизотропии этого материала. Степень анизотропии будет зависеть от величины и направления действующих механических напряжений.  [c.65]

С анизотропией (и гиротропией) связаны разнообразные явления. Однородная А, с. оказывает существенное влияние на свойства распространяющихся в ней нормальных волн, определяя, в частности, их поляризацию и различие направлений распространения boj -нового (фазового) фронта и энергии волн (см, также Кристаллооптика И Двойное лучепреломление). В неоднородной А. с. может происходить линейное вз-действие поляризов, волн (см. Линейное взаимодействие волн), приводящее к перераспределению энергии между нормальными волнами, но не нарушающее суперпозиции принцип. Последний нарушается в случае нелинейного взаимодействия волн, к-рое в А. с. также обладает своеобразными анизотропными свойствами (см. Нелинейная оптика и Нелинейная акустика). См. также Анизотропия, Магнитная анизотропия, Оптическая анизотропия.  [c.84]

Источники анизотрошш. Оптической анизотропией называется зависимость оптических свойств среды от направления. Она обусловлена зависимостью диэлектрических или магнитных свойств средь от направления. Полная анизотропия складывается из анизотропии свойств отдельных атомов и из анизотропии их упорядочения в пространстве.  [c.262]


Оптические и магнитооптические свойства. Ферриты обладают сравнительно высокой прозрачностью в ряде участков ближнего и далекого инфракрасного спектров. Ферриты-гранаты характеризуются лучшей прозрачностью, чем ферриты-шпинели. Так, в иттриевом феррите-гранате имеются окна прозрачности при длинах волн K>L<0,1 мм и 1<л<10 мкм между двумя этими областями наблюдается сильное решеточное поглощение. В редкоземельных ферритах-гранатах в первой области прозрачности могут наблюдаться поглощение при ферромагнитном резонансе (если поле анизотропии велико) в случае обменного резонанса редкоземельной подрешетки в поле железных подрешеток, а также электронные переходы между уровнями основного мультиплета редкоземельных ионов. Во второй области наблюдаются электронные переходы в редкоземельных ионах и (при более коротких длинах волн) электронные переходы в ионах яселеза в октаэдрических и тетраэдрических позициях. Ферриты-гранаты в видимой и ближней инфракрасных областях спектра обнаруживают значительный эффект Фарадея при распространении света вдоль вектора намагниченности и примерно такой же по модулю эффект Коттона — Мутона (магнитное линейное двупреломле-ние) при распространении света перпендикулярно вектору намагниченности fl09—110].  [c.708]

Физическая О. рассматривает проблемы, связанные с процессами испускания света, природой света и световых явлений. Утверждение, что свет есть поперечные ал.-маги, волны, явилось результатом огромного числа эксперим. исследований дифракции света, интерференции света, поляризации света, распространения света в анизотропных средах (см. Кристаллооптика, Оптическая анизотропия]. Совокупность явлений, в к-рых проявляется волновая природа света, изучается в крупном разделе фиа. О.— волновой оптике. Её матем. основанием служат общие ур-ния класснч. электродинамики — Максвелла уравнения. Свойства среды при этом характеризуются макроскодич. материальными константами — значениями диэлектрической проницаемости 8 и магнитной проницаемости р,, входящими в ур-ния Максвелла в виде коэффициентов. Эти значения однозначно определяют показатель преломления среды л = [Лер.  [c.419]

На появление анизотропии порядка (а/Х)" в кубических кристаллах Лоренц обратил внимание еще в 1878 г. (см. [10]). Это заключение было повторено в работе [11] на основе микроскопического рассмотрения квадрупольных переходов в кристаллах и в работе [5] на базе использования выражений (10) — (И). Только в 1960 г. оптическая анизотропия негиротропных кубических кристаллов была наблюдена [12] в закиси меди (СидО) в области квадрупольной линии поглощения. При учете пространственной дисперсии кубический кристалл СидО обладает семью оптическими осями (три оси 4-го порядка и четыре пространственные диагонали куба). Учет пространственной дисперсии сказывается, разумеется, и на оптических свойствах кристаллов с более низкой симметрией (например, одноосный кристалл при этом становится многоосным), а также существен при исследовании влияния внешних электрического и магнитного полей и напряжений.  [c.17]


Смотреть страницы где упоминается термин Анизотропия магнитных свойств оптическая : [c.139]    [c.77]    [c.515]    [c.220]   
Конструкционные материалы Энциклопедия (1965) -- [ c.87 ]



ПОИСК



Анизотропия

Анизотропия магнитных свойств

Анизотропия оптическая

Анизотропия свойств

Магнитная анизотропия



© 2025 Mash-xxl.info Реклама на сайте