Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фотоэлемент, электронный с внешним фотоэффектом

В фотоэлементах с внешним фотоэффектом используется явление эмиссии электронов с поверхности катода под воздействием светового потока. Фотоэлемент состоит из анода и катода, которые находятся в стеклянном баллоне.  [c.348]

К фотоэлементам с внешним фотоэффектом относятся фотоумножители, в которых для усиления полученного фототока применяется вторичная электронная эмиссия. На коэффициент усиления влияют конструкция фотоумножителя, свойства эмиттирующих поверхностей, условия эксплуатации, линейность характеристики, стабильность работы и т. д. Фотоумножители часто применяют в фотоэлектрических измерительных устройствах. Основные характеристики фотоумножителей приведены в табл. 41.  [c.349]


Существует три вида фотоэлементов с внешним фотоэффектом— явление излучения электронов с поверхности вещества под воздействием света с внутренним фотоэффектом — способность материалов уменьшать свое электрическое сопротивление под действием света с запирающим слоем — в фотоэлементе под действием света создается электродвижущая сила.  [c.283]

Другой прием увеличения фототока основан на вторичной электронной эмиссии и реализован в фотоэлектронных умножителях (ФЭУ). у ФЭУ такая же, как у вакуумных фотоэлементов. Коэфф. ФЭУ может быть сделан очень большим (см. табл.). Фотоэлементы с внешним фотоэффектом в зависимости от природы фотокатода, определяющей их спектральную чувствительность, применяются в диапазоне от ультрафиолетовой области спектра до Я = 1,2 мкм.  [c.199]

На рис. 53, б показан фотоэлемент с внешним фотоэффектом. Действие фотоэлемента основано на свойстве некоторых веществ создавать электрический ток или изменять его величину под действием света. Токи фотоэлементов очень малы, поэтому они применяются в сочетании с электронным усилителем, на выходе которого включается электромагнитное реле. В центре стеклянной колбы фотоэлемента находится анод А в виде кольца или стержня. Катод К фотоэлемента наносится на внутреннюю поверхность колбы в виде химического вещества. При освещении фотоэлемента начинается излучение электронов с поверхности катода, т. е. в цепи, куда включен фотоэлемент, возникает электрический ток, величина которого возрастает с усилением светового потока. Если прекратить освещение катода, то ток в цепи фотоэлемента исчезнет.  [c.82]

Фотоэлементы с внешним фотоэффектом. При внешнем фотоэффекте движение электрона, вырванного квантом света частоты V из поверхности металла, подчиняется данному Эйнштейном ур-ию, выражающему закон сохранения энергии,  [c.146]

Фотоэлементом называется прибор, используемый для преобразования световой энергии в электрическую. Действие фотоэлемента основано на явлении фотоэлектронной эмиссии, открытой А. Г. Столетовым в 1887 г. Фотоэлектронная эмиссия заключается в выходе электронов с поверхности некоторых металлов (калий, цезий, литий, натрий) под действием падающего на неё света (внешний фотоэффект).  [c.807]

Вентильный фотоэффект. Вентильный фотоэффект — это явление возникновения э. д. с. при освещении контакта двух разных полупроводников или полупроводника металла в отсутствие внешнего электрического поля. На этом явлении основаны вентильные фотоэлементы, обладающие тем преимуществом перед фотосопротивлениями и внешними фотоэлементами, что они могут служить индикаторами лучевой энергии, не требующими внешнего питания. Но главная особенность вентильных фотоэлементов состоит в том, что они открывают путь для прямого превращения солнечной энергии в электрическую. В начале нашего века существовали фотоэлементы, работающие на контактах полупроводников и металлов. Однако в дальнейшем было показано, что наиболее эффективными являются фотоэлементы, основанные на использовании контакта двух полупроводников с р- и -типами проводимости, т. е. на так называемом р- -переходе. При освещении перехода в р-области образуются электронно-дырочные пары. Электроны и дырки диффундируют к р- -переходу. Электроны под действием контактного поля будут переходить в -область. Дырки же преодолевать барьер не могут и остаются в р-области. В результате р-область заряжается положительно, -область — отрицательно и в р-я-переходе возникает дополнительная разность потенциалов. Ее и называют фотоэлектродвижущей силой (фото-э. д. с.).  [c.346]


Огромное разнообразие задач, решаемых с помощью фотоэлементов, вызвало к жизни чрезвычайно большое разнообразие типов фотоэлементов с различными техническими характеристиками. Выбор оптимального типа фотоэлементов для решения каждой конкретной задачи основывается на знании этих характеристик. Для фотоэлементов с внешним фотоэффектом (вакуумных фотоэле-.. ментов) необходимо знание следующих характеристик рабочая область спектра относительная характеристика спектральной чувствительности (она строится как зависимость от длины волны падающего света безразмерной величины отношения спектральной чувствительности при монохроматическом освещении к чувствительности в максимуме этой характеристики) интегральная чувствительность (она определяется при освещении фотоэлемента стандартным источником света) величина квантового выхода (процентное отношение числа эмиттированных фотоэлектронов к числу падающих на фотокатод фотонов) инерционность (для вакуумных фотоэлементов она определяется обычно через время пролета электронов от фотокатода к аноду). Важным параметром служит также темновой ток фотоэлемента, который складывается из термоэмиссии фотокатода при комнатной температуре и тока утечки.  [c.650]

ФОТОЭЛЕМЕНТ С ВНЕШНИМ ФОТОЭФФЕКТОМ — вакуумный или газонаполненный прибор, основанный па эмиссии электронов в вакуум под действием света (см. Фотоэффект внешний). Основные элементы прибора — фотокашод и коллектор электронов (анод) фоточувствит. слой наносится либо нено-сродствонно на стеклянный баллон, либо на металлич. слой (п о д л о ж к у), предварительно осажденный на стекло, либо на поверхность металлич. пластинки, смонтированной внутри баллона (рис. 1, а).  [c.361]

П. и. и изменяется в очень широких пределах (см. Инфракрасное излучение). К фотозлектрич. приемникам относятся различного рода фотоэлементы [с внешним фотоэффектом, с внутр. фотоэффектом (или фотосопротивления), с запирающим слоем (или вентильные фотоэлементы)], фотодиоды, фотозлектрич. агсюды электронно-оптических преобразователей, счетчики фотонов.  [c.199]

В вакуумных фотоэлементах с внешним фотоэффектом ток /ф пропорционален потоку излучения, /ф == = (Я.) Ф (X) в том случае, если все вылетающие из фотокатода электроны попадают на анод, но во многих фотоэлементах такая линейная зависимость соблюдается лишь при малых потоках. т у вакуумных фотоэлементов мала (10 —10" сек). Мал обычно и фототок ( 10 а), для его увеличения баллон наполняют инертным газом при низком давлении (т. н. га-зопаполнеппые фотоэлементы) у газонаполненных фотоэлементов значительно больше, чем у вакуумных, по они еще менее линейны (см. табл.).  [c.199]

Фотореле включает в себя (рис. 53, а) чувствительный фотоэлемент, регулирующий элемент, сравнивающее устройство, электронный усилитель и исполнительный элемент. В качестве чувствительного фотоэлемента применяются фотоэлементы с внешним фотоэффектом, фотосопротивления, фототриоды и т. п. Применение того или другого элемента определяется условиями эксплуатации фотореле и его чувствительностью.  [c.81]

ФОТОЭЛЕМЕНТЫ, приборы, позволяющие превращать лучистую энергию в электрическую. Все виды Ф. основаны на способности света передавать свою энергию электронам при этом электроны, находящиеся в освещаемом теле, могут или изменить его электропроводность или выйти за пределы поверхности, ограничивающей тело. Потеря отрицательного заряда проводником при освещении его ультрафиолетовым светом была обнаружена впервые Герцом в 1887 г. Это явление послузкило основанием для создания Ф. с внешним фотоэффектом (см. Фотоэлектричество). В целом рЯде веществ изменение электропроводности под действием света, получившее название внутреннего фотоэффекта, оказалось настолько значительным, что его также можно было использовать для создания Ф. В последнее время удалось построить Ф., основанные на перемещении электропов под действием света через границу двух соприкасающихся тел эти Ф. получили название Ф. с запирающим слоем, в силу того что чувствительный к свету пограничный слой между двумя вещест-  [c.145]


Механизм фотоэффекта достаточно подробно описан в литературе и поэтому здесь не рассматривается. Укажем лишь [25, 32], что для изготовления чувствительных слоев фотоэлементов с внешним фотоэффектом и фотоумножителей используют материалы, характеризующиеся малой работой выхода электронов. В качестве таковых применяют некоторые металлы, на которые наносят полу-проводящие слои и мономолекулярные слои атомов электроположительных металлов, снижающих работу выхода электронов. В настоящее время наиболее широкое распространение получили сере-бряно-кислородно-цезиевые фотокатоды, обладающие чувствитель-  [c.101]

Простейшим прибором, работающим иа основе пспользования фотоэффекта, явл гется вакуумный фотоэлемент. Вакуумный фотоэлемент состоит из стеклянной колбы, снабженной двумя электрическими выводами. Внутренняя поверхность колбы частично покрыта тонким слоем металла. Это покрытие служит катодом фотоэлемента. В центре баллона расположен анод. Выводы катода и анода подключаются к источнику постоянного напряжения. При освещении катода с его поверхности вырываются электроны. Этот процесс называется внешним фотоэффектом. Электроны движутся под действием электрического поля к аноду. Б цепи фотоэлемента возникает электрический ток, сила тока пропорциональна мощности светового излучения. Таким образом фотоэлемент преобразует энергию светового излучения в энергию электрического тока.  [c.304]

Действие фотоэлементов основано на появлении фото-э. д. с.—так называемом вентильном фотоэффекте, сущность которого заключается в следующем. Под влиянием поглощения световой энергии в полупроводнике будут возникать неосновные носители, электроны и дырки, которые будут переноситься через имеющийся в фотоэлементе запорный слой, создавая на электродах фото-э. д. с. Одновременно с ростом концентрации электронов в л-зоне и дырок в р-зоне будет усиливаться создаваемое ими внутреннее поле обратного знака таким образом установится равновесная концентрация зарядов. Широко применяемый селеновый фотоэлемент устроен следующим образом на металлический электрод нанесен слой селена, сверху которого расположен запорный слой р—п-перехода, покрытый тонким слоем золота, образующим полупрозрачный электрод, пропускающий внешний световой поток. На этом электроде под влиянием освещения создается отрицательный, а на нижнем положительный заряды (рис. 7-7). Чувствительность селеновых фотоэлементов составляет 500 мка/лм, серноталлиевых —  [c.331]

Фотоэлектричество. Фотоэлектрическое явление происходит при поглощении атомами вещества лучистой энергии и состоит в том, что поток световой энергии вырывает из металла электроны. Выведение электрона из данного Д1еталла начинается лишь с определённой частоты световых волн называемой порогом фотоэффекта. Порог фотоэффекта зависит от вещества освещаемого тела. Порог в видимой части спектра имеют щелочные металлы (литий, натрий, калий, рубидий). Скорость, приобретаемая злектро-нами при фотоэффекте, зависит лишь от длины световых волн, но не от интенсивности освещения. От интенсивности освещения зависит число электронов, отрываемых от атомов в единицу времени. Фотоэффект может происходить и иа поверхности тела (поверхностный, или внешний эффект), и внутри него (объёмный, или внутренний, эффект). Приборы, в которых происходит преобразование лучистой энергии в электрическую, называются фотоэлементами.  [c.496]


Смотреть страницы где упоминается термин Фотоэлемент, электронный с внешним фотоэффектом : [c.123]    [c.147]    [c.355]    [c.97]    [c.147]   
Справочник металлиста Том5 Изд3 (1978) -- [ c.0 ]



ПОИСК



Внешний фотоэффект

Фотоэлемент

Фотоэлемент с внешним

Фотоэлемент электронный

Фотоэлемент, электронный электронный

Фотоэлементы с внешним фотоэффектом

Фотоэффект

Электроны внешние



© 2025 Mash-xxl.info Реклама на сайте